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Foreword

This is the first of a series of four volumes which are to contain the
Proceedings of the Summer Seminar on Applied Mathematics,
arranged by the American Mathematical Society and held at the
University of Colorado for the period July 24 through August 19,
1960. The Seminar was under the sponsorship of the National
Science Foundation, Office of Naval Research, Atomic Energy
Commission, and the Office of Ordnance Research.

For many years there was an increasing barrier between mathematics
and modern physics. The separation of these two fields was regret-
table from the point of view of each-physical theories were largely
isolated from the newer advances in mathematics, and mathematics
itself lacked contact with one of the most stimulating intellectual
developments of our times. During recent years, however, mathe-
maticians and physicists have displayed alacrity fpr mutual exchange.
This Seminar was designed to enlarge the much-needed contact which
has begun to develop.

The purpose of the Seminar was primarily instructional, with
emphasis on basic courses in classical quantum theory, quantum
theory of fields and elementary particles, and statistical physics,
supplemented by lectures specially planned to complement them.
The publication of these volumes is intended to extend the same
information presented at the Seminar to a much wider public than
was privileged to actually attend, while at the same time serving as a
permanent reference for those who did attend.

Following are members of a committee who organized the program
of the Seminar:

Kurt 0. Friedrichs, Chairman
Mark Kac
Menahem M. Schiffer
George E. Uhlenbeck
Eugene P. Wigner

Local arrangements, including the social and recreational program,
V



vi FOREWORD

were organized by a committee from the University of Colorado, as
follows:

Charles A. Hutchinson
Robert W. Ellingwood

The enduring vitality and enthusiasm of the chairmen, and the
cooperation of other members of the university staff, made the stay
of the participants extremely pleasant; and the four agencies which
supplied financial support, as acknowledged on the copyright page,
together with the Admissions Committee, consisting of Bernard
Friedman, Wilfred Kaplan, and Kurt 0. Friedrichs, Chairman, also
contributed immeasurably to the successful execution of the plans for
the Seminar.

The Seminar opened with an address given by Professor Mark Kac,
Department of Mathematics, Cornell University, on the subject "A
Mathematician's Look at Physics: What Sets us Apart and What
May Bring us Together." Afternoons were purposely kept free to
give participants a chance to engage in informal seminars and
discussions among themselves and with the distinguished speakers on
the program.

Editorial Committee

V. BARGMANN
G. UHLENBECK
M. KAC, CHAIRMAN
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Preface

These lectures were given by one of us (G. E. U.) as a part of the
summer symposium in theoretical physics, which was organized by the
American Mathematical Society at the University of Colorado in the
summer of 1960. The lectures are printed here almost in the same
form as they were presented, which explains the rather colloquial
style and the perhaps excessive use of the first personal pronoun.
This last feature does not mean that the content of the lectures is due
only to the first author. All lectures were thoroughly discussed and
prepared by both of us, and most of the developments for which some
originality may be claimed are the result of the collaboration of the
two authors during many years.

The purpose of the summer symposium was to acquaint a group of
mathematicians with some of the basic problems in present-day
theoretical physics, hoping that this would stimulate a more intense
collaboration. In our opinion such a collaboration would be especially
valuable in statistical mechanics, since here many of the unsolved
problems can be formulated precisely and are of a technical mathe-
matical nature. Furthermore, because of the lack of exact knowledge
of the intermolecular forces, one is usually more interested in the
explanation of the qualitative features of the macroscopic phenomena
than in the precise quantitative prediction of the macroscopic quantities.
This qualitative aspect of the theory should appeal to the mathe-
matician while for the physicist it is often a real difficulty. Since the
facts are so well known the latter is often tempted to be satisfied with
more or less uncontrolled approximations based on intuitive argu-
ments. These are often very valuable, but usually they do not provide,
so to say, a foothold for a rigorous mathematical treatment. In our
opinion such a treatment is especially needed in statistical mechanics,
and to provide it is the real challenge of the subject.

We have therefore stressed as much as possible the logical structure
of the theory, and we have always tried to indicate the mathematical
gaps which remain in the argument. In addition we have tried to
start from the beginning and to avoid as much as possible the phrase:
it can be shown. Proofs are often put in the notes at the end of each
chapter together with references to the literature. We hope that as

ix



X PREFACE

a result the book can be used as a short but self-contained introduction
to the subject, although we realize that it will have to be used with
tact, since the textbook-like chapters alternate with chapters describing
work still in progress.

To achieve, even only approximately, these rather conflicting goals,
it soon became clear to us that we had to limit the field considerably.
Not only have we restricted ourselves to the simplest possible physical
systems (namely mono-atomic gases) but even for these systems we
could only discuss a few characteristic problems. The most severe
limitation we had to impose was the restriction to the classical theory.
This is fortunately somewhat mitigated by the two lectures Dr. E.
Montroll gave, which are reproduced in the Appendix. Here an
account is given of some of the recent developments in quantum
statistics to which Dr. Montroll himself has made such important
contributions.

In one respect we did not want to limit ourselves. It is often
customary either to consider only the statistical problems for the
equilibrium state (sometimes called statistical thermodynamics), or to
concentrate on the explanation of the irreversible and transport
phenomena (sometimes called kinetic theory). It seems to us that
such a limitation gives a distorted view of the subject, and that one
should try to give a unified treatment both of equilibrium and non-
equilibrium statistical mechInics. We have therefore devoted six
lectures (reproduced in the first three chapters) to equilibrium prob-
lcms and six lectures (reproduced in Chapters 4-7) to non-equilibrium
problems, and we have attempted to point out at least the conceptional
connections between the two fields.

Finally there remains the pleasant duty to thank in the first place
Professor Mark Kac for all the help and advice he has given us. If
these lectures would inspire one other mathematician of the calibre of
Professor Kac to work on the problems of statistical mechanics the
symposium would have more than justified itself! The reader would
also be well advised to read in parallel with these lectures the third
chapter in the book Probabilit, and Related Topics in Physical Sciences,
by Professor Kac, since the outlook is in many respects the same as
ours. Then we want to thank Professor T. H. Berlin for many
discussions and for his permission to use a few parts of a manuscript
on which he and one of us (G. E. U.) have been working for quite
some time.

G. E. UHLENBECK

G. W. FORD



CHAPTER I

The Explanation of the Laws
of Thermodynamics

I. Introduction. In this chapter I will try to present an outline of the
foundations of statistical mechanics, and I must apologize for the fact
that it will not be a clear, axiomatic presentation. This is not because
I am, as some physicists are, impatient with general discussions of
fundamentals. On the contrary, I believe that further progress is
intimately connected with a further clarification of the foundations.
However, at present there is no generally accepted opinion of what the
basic assumptions of the theory are, and as a result I can only present
my own point of view, which is, I believe, a kind of paraphrase of the
fundamental ideas of Boltzmann and Gibbs. And since these ideas
were mainly developed in the attempt of explaining the laws of thermo-
dynamics from the molecular theory of matter, I will follow also in
this respect in the footsteps of the two founders of statistical
mechanics.'*

First, let me remind you of the general problem of statistical physics.
Given the structure and the laws of interaction of the molecules,
what are the macroscopic properties of the matter composed of these
molecules? To start one has therefore to say something about the
molecular model and about the basic microscopic laws. For sim-
plicity I will almost always assume:

(a) The motion of the molecules is governed by classical mechanics.
It is true that the quantum mechanics adds new features to the prob-
lem; it may even be that the act of measurement introduces a "true"
irreversibility into the theory as some authors claim. But most of the
essential questions arise already in the classical theory, and since it is
more familiar to you, I will restrict myself to this theory.

(b) The molecules are mass points interacting through central
forces, which have the additivity property and which are of the van

* Numbers refer to Notes at end of Chapter.



2 THE EXPLANATION OF THE LAWS OF THERMODYNAMICS

der Waals or molecular type. This means that the given Hamiltonian
of the system of N particles is of the form:

(N H= 2m 1
(I) H= [A + U(r,)J + #I 0r 1 - r1 )

IIl J<j

where the interaction potential 0(r) has the typical form shown in
Fig. I. It consists of an attractive region with finite range r, and a

ro

Figure I

very steep repulsive part which can be taken as a hard core of radius
r o.2 In Eq. (1) U(r1) is the potential of outside forces acting on the
ith particle and includes the potential corresponding to the forces
exerted by the walls of the container so as to keep the particles inside
the volume V. In fact this "wall potential" will usually be assumed
to be the only outside force acting on the molecules.

The limited validity of these assumptions should be emphasized.
The basic microscopic laws are surely quantum-mechanical, and the
great richness of the macroscopic properties of matter can only be
understood if more complicated molecular structures and other types
of forces are taken into account. Our assumptions would hold only,
say, for gaseous or liquid Neon. However, even with these simplifying
assumptions there are still plenty of unsolved problems! Also many
of the questions, which we will consider, depend only on the qualita-
tive features of the interactions and their treatment will therefore have
a much wider validity.



THE LIOUVILLE THEOREM 3

2.1 "Lioullle dteorem. We represent the state of a mechanical
system of n degrees of freedom by a point in the 2n-dimensional phase
space or r-space. In our case n = 3N, N = number of particles,
and the coordinates of a point in P-space are r1*.. rN, Pi "'PN. In
the course of time this P-point will move according to the Hamilton
equations of motion:

OH OH
(2) 0 - ' i 1,2, ...,n.

Since these equations are of first order in the time it is clear that the
path of the representative point in P-space will be determined by the
initial point. To visualize the motion for all possible initial points,
imagine that one has a very large number of copies of the system.
Each copy sends a point in V-space, and if the number is large enough,
one may consider the collection of points as a fluid streaming in
P-space and possessing in any point a certain number density
p(q1...q,,p..p.,t). The streamlines of the fluid motion are
identical with the particle paths as determined by (2). With Gibbs
we call this the ensemblefluid or just an ensembk of mechanical systems.
One should note that the total number of copies never plays a role
and is only introduced as an aid to visualize all the possible motions
of the P-point. The ensemble fluid is a true continuum, and instead
of the streaming of the fluid it may be better to speak of a continuous
mapping of the P-space in itself. Soon also the density p will become
the probability density that the system is in a region dq1... dp. of
P-space, and we shall then denote it by D(q ... p., t) and assume the
normalization condition:

f... fdql ... dp. D= l.

In addition if the N particles are identical one should require that D
be a symmetric function of the phases (r,, p,) of the separate particles.

A theorem which plays a central role is the theorem of Liouville,3

which states that the ensemble fluid moves as if it were an incompressibk
fluid.

To prove this, note that the "velocity" V (components q..,
il... fulfills the condition:

( Qv+ V.)
(3) divV a 1" 2,") •~ . XS, • = 0
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by virtue of the Hamilton equations. Since one always has the
continuity equation:

Op + div (pV) = 0

or:
Dp

(4) D- + pdiv V = 0

with

D a
(5) + V.grad

+ i1 + p

it follows from (3) that:

(6) Dt

which means that p does not change if one moves with the fluid, or
the fluid is incompressible.

If one stays at a fixed point in F-space then p changes according to:

e- + V-grad p = 0

or:
(7) Lp (OH ep 1H 1_p) H'(-7)= • ap, eP) q = {H, p}

where (H, p} is the Poisson bracket of Hand p. This is the "Eulerian"
way of expressing the incompressibility of the fluid. In the "Lagran-
gian " way of describing the motion of the fluid, the position (qr* • 'p.)
of a fluid element is given as a function of the initial position (qjo • . pR0)
and of the time. The condition for the incompressibility of the flow
is now that the Jacobian:

(8) Paq o ... p.)
ij~qjo ""PRO)

which expresses the fact that if one follows a whole volume of points
during the flow, this volume always stays the same, although of course
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its shape will vary. Or in other words: the transformation of the
V-space into itself induced by the flow preserves volumes. It is easy
to see that the characterizations (7) and (8) are completely equivalent.

Two simple consequences of the Liouville theorem are worth
noting:

(a) For any function F(p) of the density, the integral:

f . .. f F(,) dq, I ... dp.

taken over the whole F-space is independent of the time.
(b) Any density distribution p will be stationary, i.e. will not depend

explicitly upon the time, if and only if p is constant along each stream-
line. In particular any distribution p(H), which is a function of the
Hamiltonian H, will be stationary, although such distributions are by
no means the only stationary ones.

3. The approach to equilibrium; the ideas of Boltznman. How can one
"explain" the irreversible behaviour of macroscopic systems from the
strictly reversible mechanical model? This question, which I call the
problem of Boltzmann, has dominated the whole initial development
of statistical mechanics and it is still being discussed. In its simplest
form, one must "explain" in which sense an isolated (that is a con-
servative) mechanical system consisting of a very large number of
molecules approaches thermal equilibrium, in which all "macro-
scopic" variables have reached steady values. This is sometimes
called the zeroth law of thermodynanies and it expresses the most
typical irreversible behaviour of macroscopic systems familiar from
common observation.

The conflict with mechanics is most drastically shown if one recalls
the famous Poincare recurrence theorem. For a conservative system,
the motion of the r-point will stay on the energy surface H(q1 ... )
= E. Furthermore the motion is bounded (in the momenta by the
total energy E and the finite attractive potential energy; in the co-
ordinates by the volume in which the molecules are enclosed). For
such a mechanical system starting from a point P on the energy surface,
the theorem says that for an), region around P, there is a time T in
which the phase point of the system will return to the region (see
Fig. 2). Or in other words, the motion is quasi periodic, and there is
apparently no trace of an approach to equilibrium. An outline of the
proof of the Poincar6 theorem is given in the notes.4

Let me now try to sketch the classical Boltzmann-Gibbs resolution
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of this conflict. The general idea is that the two sides of the conflict
refer to two different levels of observation or description of the
system, namely the molecular and the macroscopic level. Clearly
thermal equilibrium is a macroscopic notion. For its description it
is not necessary to know the precise path of the /-point over the
energy surface. It can be characterized by a small number (small
compared to N) of "macroscopic" quantities. We shall see that it is
due to this difference in description that one can understand and

Figure 2

reconcile the apparently basic difference in the temporal behaviour on
the two levels.

To see how this works, consider first with Boltzmann the case of an
ideal gas. When the intermolecular forces can be neglected, then all
macroscopic properties of the system are determined by the distribu-
tion of the N points representing the coordinates and momenta of the
N molecules in the six dimensional phase space of a single molecule.
We call this the IA-space distribution. To describe such a distribution
of a finite number of points, one must divide the total jL-space (which
is finite since it is limited by the volume of the vessel and the given
total energy) in a large number M of small but finite regions or cells
W1 , W2 ... WJ, and one must record at a given time the numbers
n1, n2 " • .nM of points in these cells. The size of the cells must on the
one hand be large enough so that the numbers n, are appreciable and
on the other hand small enough so that the nj really give a presentation
of the density distribution of the N points in ju-space. One some-
times expresses this compromise by saying that the cells must be
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"physically infinitesimal". It is a compromise which always must be
made in the description of an empirical distribution of a finite number
of discrete entities.

Clearly the distribution n1 , n2 ' •. over the cells w,, w2 " . . in J,-space
describes the state of the gas much less precisely than the description
by one point in F-space. Each point in F-space corresponds to a
definite distribution in 1s-space, but the reverse is not true. In fact
it is easy to prove that a given distribution in s-space corresponds to a
whole region (6N-dimensional) in F-space which has the volume:

(9) W = N! - w ;&"2... 'A(.
nj! n2 ! ... nM! 1 2 "

PROOF. Clearly the distribution n, will not change if we move the
molecules around in their cells. Moving, say, one of the molecules
in the first cell around, leaving all other molecules fixed, will move the
corresponding r-point over a six-dimensional volume W1. Since in
F-space the states of the different molecules are represented by
orthogonal six-dimensional sub-spaces, the motion of all N molecules
in their cells will move the /-point over a "block" in F-space of the
volume:

(10) U " "U.

In addition the distribution n, will not change if we permute two
molecules in different cells and the motion of the molecules in their
cells after the permutation will again produce a block of size (10) in
F-space, which will have no common region with the previous block.
Since there are:

(I N!(11) Nnj! n2! ... nu!

ways of dividing the N molecules in groups ni, n2 ", the total volume
in F-space will be given by the product of (10) and (II).

The set of numbers n, is restricted by two subsidiary conditions:

In,= N,
(12)

1 E
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which express the conservation of total number and of total energy.
Here ej denotes the energy of a particle in the cell w,. That one can
assign this energy independently of the occupation numbers of the
cells is clearly due to the assumption of the ideality of the gas. Note
also that in (12) the value of E is not precisely determined, because the
F, will vary slightly when the points move in their cells. The E in
(12) is therefore not strictly the same as the given energy which deter-
mines the energy surface H(q, p) = E in V-space on which the /-point
moves. In fact the energy condition (12) determines two neigh-
bouring energy surfaces around the given energy surface. The
region in between we will call the energy shell; its thickness clearly
depends again on the finiteness of the cells wd in IA-space.

NEquilibriumS~state

S• Non-equilibrium

states

Figure 3

The volumes W(n1 , n ... ) of the different distributions n, over the
cells w, in IA-space (as given by (9)) will cut out of the energy shell
cylindrical regions of different size. Now one can prove the
theorem :'

If N is very large then the so-called Maxwell-Boltzmann (M.B.)
distribution:

(13) f, = Awo,e-,

corresponds to a volume W which cuts out the overwhelmingly largest
portion of the energy shell. In (13) the A and P are constants which
must be determined from the subsidiary conditions (12). Schemati-
cally the division of the energy surface in /-space by the various
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volumes W(ni, n,...) is shown in Fig. 3. Boltzmann now identifies
the M.B. distribution in 1,-space with the thermal equilibrium state of
the gas, and all other 1s-space distributions with the macroscopic
non-equilibrium states of the gas.

If we now assume, that in the motion of the V-point over the energy
surface there is no preference for any portion of the surface and that
in the course of time every accessible part of the surface will be
reached, then it is very plausible that the time t(A) during which the
V-point is inside a region A is mainly determined by the magnitude of
the area of A. Clearly one can then conclude:

I. If the gas is not in the thermal equilibrium state (- M.B.
distribution), then it almost always will go into this state.

2. Once the gas is in the equilibrium state it will almost always
stay there, although fluctuations away from equilibrium will and
must occur because of the quasi-periodic character of the motion of
the V-point.

This is the Boltzmann picture. It clearly reconciles the reversibility
of the mechanical motion as expressed by the Poincare theorem
with the existence of a state of macroscopic equilibrium.

4. The generalization by Gibbs. The ergodic theorems. In the previous
section we have avoided on purpose any mention of the word proba-
bility and of the ergodic hypothesis so as to emphasize the plausibility
of the general ideas of Boltzmann. In order to generalize these ideas
and to show the connection with the theory of probability and with
the ergodic theorems, let us repeat the previous argument in a more
abstract fashion.

Instead of describing the macroscopic state of the gas by the numbers
n1 , n2, • ' of points in the different cells of u-space, one could also say
that the macroscopic state of the gas is defined by the values of a
number of macroscopic variables:

(14) Yt =f,(x. X2 ... XN)

which are functions of the phases xk = (rk, pk) of the N particles. For
identical particles the functions f should of course be symmetric in
the x,. In fact in our case (ideal gas), one can take for these functions

N

(15) ,= 1A,(x0), i = 1,2... M
k --I

where
I if x is in cell w, of 1s-space,
0 otherwise.
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The values of the y, are then clearly the numbers n, in the cells (0,
corresponding to the point P (x 1 ... XN) in F-space. Here again
the question of the size of the cells w, comes up. Instead of saying
that they should be physically infinitesimal, as explained in §3, so as
to give the "best" description of the distribution in s-space, one can
also say that the sizes of the cells are essentially arbitrary and depend
only on how detailed the macroscopic observation is. However, they
always must befinite, so that corresponding to a given set of values of
the )', there is a region in F-space. In addition it must always be so
that for one set of values of the macroscopic variables y,, when N is
very large, the corresponding region in /-space is overwhelmingly
the largest. Of course in our case this follows as we saw from the
explicit expression (9) for the volume of the F-space region.

In the general case, when the intermolecular forces are not neg-
lected, it is clear that the I,-space distribution will not be enough to
specify the macroscopic state of the system. For instance, often we
will have to know how many pairs of molecules are in each other's
action splicre since this will affect some of the macroscopic variables.
However, we will still assume that the macroscopic state can be speci-
fied by giving the values of a number of phase functions ),t, so that

(a) each macroscopic state corresponds to a region in F-space and
therefore to a portion of the energy shell, and so that:

(b) for large N there is one set of values of the Y, which corresponds
to a region which is overwhelmingly the largest.'

For a given macroscopic description, that is for a given choice of
the variables y,, the energy shell will then be divided in fixed regions
as indicated schematically in Fig. 3. Suppose now that at t = 0, one
has "prepared" the system in a definite non-equilibrium macroscopic
state. With this initial macroscopic state we associate an initial F-space
probability distribution D(P, I = 0) which is different from zero only
in the corresponding region of the energy shell. Inside this region
D(P, 0) is in principle arbitrary, except that it should be a sufficiently
smooth function of P. One can take for instance D(P, 0) constant
inside the region and zero otherwise. Note that we now write D for
the density distribution p; D is normalized to unity.

This is the only probability assumption which one makes, and one
can argue that it is the simplest assumption which is consistent with
our macroscopic knowledge. From the Liouville equation one then
can find in principle D(P, t). It is the character of the change
D(P, 0) -D(P, t) which determines everything. Gibbs in the
notorious Chapter 12 of his book describes it about as follows. The



THE GENERALIZATION BY GIBBS. THE ERGODIC THEOREMS II

volume of the region where D 6 0, remains according to Liouville
the same, but the shape will change drastically. Especially because of
the sharp intermolecular forces two 17-points which are originally
close together will soon be far apart. As a result the volume of the

Figurc 4

initial region will be drawn out to a very long and thin thread which
more and more will wind through the whole energy shell (see Fig. 4;
note that one should always think of the energy shell of points such
that E _-• H =< E + JE, so that the thread is really a thin ribbon).
One can expect therefore:

I. In the course of time the probability distribution D will become
more and more uniform over the energy shell. Of course this is
meant on/y in the coarse-grained sense; the distribution will always
consist of a thin filament more or less uniformly wound through the
energy shell. The distribution which is uniform within the energy
shell we will call with Gibbs the inicrocanonical ensemble..

2. This approach to uniformity will continue when t increases,
although each F-point will move quasi-periodically according to the
Poincare theorem.

3. The time it takes until uniformity is reached will depend essentially
on how one judges the uniformity, that is io say on the size of the finite
regions in which the energy shell is divided according to the chosen
macroscopic description.
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4. For any macroscopic description there comes a time when the
probability of each macroscopic state is determined by the size of the
corresponding region of the energy shell. Since for large N, there is
one region which is overwhelmingly the largest this will then also be
the most probable state and it characterizes the thermal equilibrium
of the system.

I hope I have made clear the similarity between the Boltzmann
picture and the more general argument of Gibbs. Of course in both
cases a number of statements were made without proof, and they may
seem so vague that they are not amenable to proof! It is therefore of
great interest that at least part of the argument can be formulated
much more precisely by means of the Birkhoff ergodic theorems.'
Let me remind you of these theorems:

(a) For a bounded mechanical motion and for any phase function
y = t(P) which is integrable over the energy surface, the time average:

(16) 7Lim I dtf(P,)

almost always exists. Here P, denotes the phase point which evolves
from the initial point P, by the motion. Furthermore T is independent
of the choice of the initial point on the trajectory, but -v can vary with
the trajectory.

I will not try to indicate the proof since it is quite tricky. All that
is used is the boundedness of the motion and the Liouville theorem.
It is therefore certainly applicable to the Gibbs macroscopic variables

(b) For a metricallyv transitive system the time average (16) is inde-
pendent of the trajectory chosen and is equal to the ensemble average

(17) y, f ... f d~f(P)a H).

Here the integral goes over the energy surface and c(H) is the dis-
tribution over the energy surface which corresponds to the uniform
distribution in the energy shell, so that:

const.
(18) ,((1) - Igrad HI
where the constant is to be determined by the normalization con-
dition:

f... f a(//) d2 = 1.

a(H) is called the microcanonical surface distribution.
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A mechanical system is metrically transitive if the energy surface
can not be divided into two finite regions such that the orbits starting
from points in one of the regions always remain in that region. It is
clearly a more precise formulation of the idea that in course of time
the path of the P-point will fill the whole energy surface which we
used in the Boltzmann-Gibbs argument.' Of course it is very difficult
(and it has not been achieved) to prove for a given Hamiltonian that
the motion is or is not metrically transitive, and even examples which
can be discussed exactly are rare.' However, the advantage of a
precise formulation remains. Note still that in principle it is not
necessary for the equality of the time and phase averages that the
mechanical system has a large number of degrees of freedom, although
it seems more likely that the system will be metrically transitive if
N is large.

Let us now return to the Boltzmann-Gibbs picture of the approach
to equilibrium. First, by taking in (16) and (17) forf(P) the character-
istic function of a region A on the energy surface (that is f(P) = I if
P is inside A and f(P) = 0 otherwise), it follows that for a metrically
transitive system:

(19) Lim -t(A) = V(A)
'.. T V

where t is the time the phase point spends in A, and where V(A) is
the volume of the part of the energy shell, whose total volume is V,
which is based on A. This is clearly the precise formulation of the
assumption essential for the Boltzmann picture that the time t(A) is
mainly determined by the magnitude of the area of A. 10

Also the argument of Gibbs can now be expressed more precisely.
The assumption that for large N there is one set of values of the
macroscopic variables y, which correspond to by far the largest part
of the energy surface, can be replaced by the requirement that the
variables yv must be normal variables."1  By this we mean that for
large N the Y, must have the property:

(20) 1 ý.2,> - "

or in words: the fluctuation of each of the y, must be very small
compared to .'•', itself. Here the average values are always taken as
in (17) over the microcanonical ensemble. It is then clear that if
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one starts at t = 0 with the initial distribution D(P, 0) the expectation
values of the variables y, defined by:

(21) y,(t) = f ".. f d f(P)D(P, t)

will start with the values ),(A) corresponding to D(P, 0) and become
for t -,- x the fY(oo) = /y,) which for a large system are very closely
equal to the equilibrium values."2 This is so, because from the
ergodic theorems and from (20) one can conclude that for almost all
trajectories and for the overwhelmingly largest time the y, must have
constant values. Note still that with the "Boltzmann" y, as given
by (15) the ., are the expectation values of the numbers n, in the cells
w, at time t.* These are connected with the so-called first distribution

function F,(xi, t) defined by:

(22) -F,(x1, t) = ... fdx 2 ." dxN D(x1 "xN, t).

In fact if one smoothes the AP(t) over the cells then the "histogram"
becomes a smooth function f(x, t)dx where:

p p N

f (x, t) ... fdx .. dx,, (x - xi)D(xl xN, t)
1=!

NV F,(x, t).

Similarly to (22) one can define the second or pair distribution function

and in general the s-tuple distribution function by:

(23) b,(.v , ,.-,, t) = P f. - f dx, fI .dXN D(X1 . XN., t)

We will come back to these functions in Chapter VII.
Let me conclude this section with some remarks about the bother-

some notion of the macroscopic variables or of the macroscopic
"observer", since it has led to so much controversy.

I. The notion of macroscopic variable may seem a bit vague, but

this cannot be helped as long as the discussion is kept in general terms.

* Note that in §3 the ,i, denoted the nwximnizing set of values of the ni, which arm the
equilibrium values. For large N they are closely equal to what is here denoted by
fi,(r) or by Ln,
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In Chapter Vii we shall see that the expectation values of the usual
macroscopic variables (as stress tensor, temperature distribution, etc.)
can be found from the first few of the distribution functions (23).

2. There is an element of arbitrariness in the concept of the macro-
scopic description of the system, which may seem objectionable.
However, it is clear that in principle the macroscopic knowledge of
the state of the system depends so to say on the zeal of the observer
and can therefore not be defined in general. All one can say is that
the macroscopic description is a contracted description, which uses
much fewer variables than required for the precise microscopic speci-
fication. Also, in practice, it usually is clear what the macroscopic
variables are, since they are dictated by the experimental phenomena
which one tries to explain. To avoid the arbitrariness by introducing
the concept of a probability distribution over all possible macroscopic
observers,"3 as some authors have done, seems to me only to increase
the confusion.

3. The arbitrariness of the macroscopic description affects the time
required for the expectation values Y,(t) to reach their equilibrium
values 'y,>, since the choice of the y, determines the size of the regions
in which the energy shell is divided. One expresses this often by saying
that the relaxation to equilibrium depends on the coarse graining.
I think this is surely the case, but on the other hand it is clear that the
relaxation to equilibrium will also depend on the Hamiltonian, that is
on the structure of the mechanical system, and it is this dependence in
which one is usually more interested, since the choice of the Y, is
fixed by the experimental situation.

4. The variation in time of the yJ(t) in principle will always depend
on the initial probability distribution D(P, 0) in r-space. This again
seems objectionable, because of the arbitrariness. Even if one says
that D(P, 0) should be chosen so as to correspond with our initial
macroscopic knowledge of the system, it is clear that this cannot
possibly determine D(P, 0) completely. The answer is, I think, that
one is only interested in that part of the relaxation of the *v, to equili-
brium which is independent of the choice of D(P, 0). One should
expect that in a proper macroscopic experiment this will be the case
after a short "chaotization period". Or one can say that after such a
short period the temporal development of the yv will be determined
by the y, themselves through equations which are of the first order in
time. I call this the requirement of macroscopic causality. It is a
condition on the choice of the macroscopic description, which clearly
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can only be fulfilled in some asymptotic sense. We will come back
to this in Chapter VII.

5. The laws of thermodynamics. We must now discuss the connec-
tion with or the "explanation" of the laws of thermodynamics. In

the usual formulation of these laws, this means that we have to
explain the following five basic facts and notions.

(a) The existence of thermodynamic equilibrium for a closed system.
This is the so-called zeroth law referred to in §3."1 Let me assume
that it was sufficiently elucidated in the previous sections!

(b) The notion of temperature. In thermodynamics the equili-
brium is in the first place characterized by the temperature. In order
to represent the temperature by a number one must show besides the
existence of an equilibrium state, that the equilibrium state has the
transitive property. If system A is in equilibrium with the systems
B and C separately then B and C are also in equilibrium between
themselves. Here we mean by equilibrium of two systems the fact
that the macroscopic properties of the systems will not change when
the systems are coupled "weakly" together. The coupling must
allow interchange of energy between the systems, but the interaction
energy must be completely negligible compared to the energy of each
of the two systems.

(c) The first law of thermodynamics. Since the molecular model is
always taken to be a conservative mechanical system, so that the total
energy is already conserved, the only question which remains is that of the
distinction between the notions of quantity of heat and of external work.

(d) The second law of thermodynamics for reversible phenomena.
Knowing how the temperature T and the quantity of heat Q have to
be interpreted, one must show that for a "reversible" change of the
macroscopic state SQ/T is a perfect differential of a function (the
entropy) of the macroscopic state of the system.

(e) The second law of thermodynamics for irreversible phenomena.
This says that in an irreversible or spontaneous change from one
equilibrium state to another (as for example the equalization of
temperature of two bodies A and B, when brought in contact) the
entropy always increases.

In the following we will discuss these points in succession.

6. The notion of temperature. The canonical ensemble. For the
introduction of the notion of temperature we have to discuss the
equilibrium of the system A under consideration when it is weakly
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coupled to a very large "heat reservoir" B. Under weakly coupled
we mean that the total Hamiltonian can still be taken as:

(24) H= HA+ HB

although A and B interact and can exchange energy. We assume that
the total system A + B is in equilibrium in the sense of the micro-
canonical ensemble. The question is now to find the probability
that the system A is in a certain element dfA of its phase space. We
will prove that in the limit that system B is very large, this probability
is:

(25) DAdIA = Ce-'HA dFA

where the constant C is determined by the normalization and where
P is a parameter which depends on the system B but in the limit is
independent of its size. The probability distribution (25) Gibbs
calls the canonical ensemble.

There are many versions of the proof of this theorem"5 and it can
be presented in various degrees of rigour. The following simple
proof fulfills I think all the physical requirements. Let V(E) be the
volume in r-space of the region where H < E, and call S(E) =
dV/dE. S(E) is then the "area" of the energy surface H = E, which
can also be expressed as:

f fIgrad HI
II E

The micro-canonical distribution in P-space can now be written in
the form:

(26) Dmicro .. n.(x.' xs) dF S(H - E) dS(E)

using the Dirac 8-function. If the two systems A and B are in equili-
brium in the sense of the micro-canonical ensemble with the total
energy E, then, since the two P-spaces are orthogonal to each other,
one has for the distribution in the combined P-space:

(27) D dl'Adl' = S(JE 8(HA + Ho - E) dFAdr,

where:
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(28) S(E) = f, de SA(E)SB(E - E)

as follows immediately from the normalization. The distribution
function for system A irrespective of the state of B is therefore:

DAdrA= (-) dri 8(HA + H, - E)

dIA(29) E de S(E)8(HA + HB- E)

SB(E- HA)drA.
S(E)

In most proofs, to make things definite, one assumes that B consists
of a large number of weakly coupled systems, so that in turn

H = HI+H 2 +'" + H,.

Physically this means that one assumes the heat reservoir B to be an
ideal gas. and there is clearly nothing against that. But then we may
as well assume that B is an ideal gas of N point molecules, in which
case:

H, = •..
N-- 2m

The energy surface then becomes a hypersphere of radius (2mE)I'2
in the 3N momentum directions and a hypercube of edge L (V = L3 =
volume of the vessel) in the 3N coordinate directions, so that clearly:

(30) St(E) = CNE 3N)- 1) 2

indicating only the dependence on E. Now write (29), using (28) in
the form:

DA arA = dPA S,(E - HA)/ dSA(E) S -E -

Dfd(Ae) oddr)S(E)

From (30) and for large N:

(31) S,(E - E) -(_f)N-I)!2
SR(E) (E)

with:

(32) dlnS.~ 3N
dE =2E
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in which all that is assumed is that we are interested only in values of
e '4 E. Since DA is constant on energy surfaces HA = E one gets:

(33) DAdrA = drA e-HA
o d SA(E)e-0'

which is of the form (25) and which is automatically normalized to
one, since:

f... f rrADA(H) = f dE AFDi)

Note that I/# is proportional to the average energy per particle of
the heat reservoir and is in this sense independent of the "size" of
the reservoir.

Note that if we had several systems A,, A2..• each coupled to the
very large reservoir B, then the probability for each of them to be in
their region drAl is given by the canonical distribution with the same
ft. The quantity P has therefore all the required temperature properties
and it must be an universal function of the thermodynamic tempera-
ture.

Note, finally, that the system A will always be canonically distri-
buted, whatever its size. It could consist of a few or even one mole-
cule. However, we will only use the theorem in the case that A is of
macroscopic size. In this case because of the steepness of increase
of SA(E) with E, the canonical distribution (33) will be very narrow
around the average value, so that then the difference between the
canonical and the micro-canonical distribution will be slight."6

7. The first law of thermodynamics. Since both in the first and in
the second law of thermodynamics one considers changes of the
macroscopic state of the system, we first need to look more closely
at the outside potential U in the Hamiltonian (1) through which the
changes of state are produced. In general one can say that this
potential U(r,, a,, a2 ... ) will depend, besides on the position r, of
the ith molecule, on a number of parameters ak which characterize
the outside fields. Suppose for instance that the outside field is
produced by m fixed and independent centres of force. Then:

U(r,, a,, a 2 '.) = O 0j(1r1 - RkI)
k=1

and the parameters a, are the positional coordinates Rk of the centres.
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The force on the ith molecule:

(34) F1 = - ( )R k fd

is equal and opposite to the sum of the forces:

(35) kiXk = - cont.k I I1X k =E I O onst

exerted by the ith molecule on the centres as required by Newton's
third law.

Although it is always possible to describe the outside force fields
in such detail that the equality of action and reaction is put in evidence,
it is in general not convenient to do so. Already if the force centres
Rk are not independent but are rigidly connected to each other, then
it is clearly indicated to describe the centres by the six coordinates of
the rigigAstructure of connected sources. In this case the force F1
on the ith molecule is still related to the generalized force:

(36) X, = - (iJU 0 h, it.

acting "in the direction ak" on the sources, but the relation is more
complicated than in (34) and (35). In the general case we will there-
fore not bother with the relation between the force:

F = - 4k COSt

acting on the ith molecule and the generalized force X, in the direction
a,. The forces Xk will determine the work done on the gas forfixed
configuration of the molecules if one changes the outside force fields
by changing the parameters ak. In fact this work will be given by:
(37) SW = - X, Sa, - X, Sa, ....

where the equality of action and reaction is used implicitly.
Turning now to the first law of thermodynamics, I have remarked

already that since conservation of energy is so to say built into the
theory the only question remaining is how to distinguish between the
external work W done on the system and the quantity of heat Q put
into the system.

Work can only be done on the gas by changing the parameters ak,

and from (36) and (37) we see that the work done on the gas is:

(38) 8W= -- k&1k
k
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where:

(39)T, f fd "HD

is the force in "direction" ok averaged over all the configurations of the
gas. If one takes for D the microcanonical distribution then clearly
8W must be equal to the increase SE of the energy, or in thermo-
dynamical language the change 8 is then an adiabatic one. If, how-
ever, one takes for D the canonical distribution, then after the change
8ak of the parameters a, the original distribution will in general not
be an equilibrium distribution with respect to the heat reservoir.
A redistribution will take place, which will change the average energy,
and we will define the quantity of heat 8Q put into the system by:
(40) SQ = 8E- 8W.
That this is appropriate can be seen also by saying that the average
energy can also be changed by changing the / of the heat reservoir
without changing the parameters ak, and in this case the change should
clearly be called the heat put into the system.

Note finally that since usually the only outside potential we consider
is the wall potential for which there is only one parameter a, namely
the volume V of the vessel, one can write in this case Eq. (38)

W= -pSV
where:

(41) p =f ... fd(-H ')D

is clearly the pressure exerted by the gas which if D is the canonical
ensemble will be a function of V and f. The macroscopic state of the
system is then specified by V and /, or in the general case by P and the
parameters ak.

8. Tbe second law of tbermodynamics. We will now show that for a
change 8 in which both the 9 of the heat reservoir and the parameters
a, are changed in such a slow or "reversible" way that the system
may always be considered to be canonically distributed, the quantity
P8Q is a perfect differential of a function of the state of the system,
that is a function of P and the ak.

To prove this, write the average energy in the form:

f= r Hei - lnZ

J dre-l"
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with:

(42) Z = fPre-OH.

Hence:

S - a2  02
ý= 5 (In Z) SP - ýp- (in Z) Sak.

From (38) follows that the work done on the system can be written as:

fdIe- OH -OH Sa8 W = Jdea l8an 8ksw - fýa-, _I :ElIn Z S
f dr = - k O ak .

Therefore:

P SQ =P(8R- 8W)
;)

2 1 nZ 02a nZ alnz].8a=-i- k TPa• a aa

i)[, In _Z IZa[ ' nZ a

=8[InZ - P t In Zj = [-P2 (Ilnz)Z

which concludes the proof.

Comparison with SQJT = 8S shows that:

(44) P = k -T

S = -kp2 I(nZ + const.

(45)
= -jT(kTInZ) + const.

where T is the absolute thermodynamic temperature, S the entropy
and k an universal constant which cannot be determined from this
argument. To find k, one must consider the case of an ideal gas,
enclosed in the volume V. Then:

Z= f(... f )dri ...drf...fdpl...dpNexp(-P

= V,(21rmkT)3 1112.
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From (41) this gives for the pressure:
8 NkT

(46) p = b (kT In Z) = AT

So one gets the ideal gas law if k = RIN is the gas constant per
molecule.

I will omit a more detailed discussion about the question in which
precise sense the entropy S as defined by (45) has also the property
(required by the second law for irreversible processes) of increasing
in any spontaneous transition from one equilibrium state to another.
Since we have explained the zeroth law the reader will believe that
this part of the second law, which is a more precise expression of the
irreversible behaviour of macroscopic systems, can be "explained"
in a similar way.

Finally a remark about the constant in the equation (45) for the
entropy. Clearly from the argument given it is not possible to fix
this constant and one cannot even determine its dependence on the
number of particles N. Thermodynamically only entropy differences
between states which can be connected by a reversible transition are
operationally defined. Therefore since N is fixed, the dependence of
the entropy on N can only be agreed upon by convention."7 How-
ever, it certainly is a sensible convention to require that the entropy
at fixed Tand for large N and large V, so that r = V/N is fixed, becomes
of the form:

(47) S = Ni?(r, T).

The entropy becomes then a so-called extensive variable, that is pro-
portional to the size of the system when the intensive variables T and v
are given. In addition one also would like to insure that all the
classical results agree in the limit T ,. o with the results of the
quantum statistics, if one makes the usual assumption that each non-
degenerate energy level has the statistical weight equal to one. Note
that this is of course also a convention, since only the ratios of the
weights of different levels have operational meaning, but it certainly
is a very appealing convention. Both these objectives are realized by
omitting the constant in (45) and by defining Z instead of by (42), by:

Z(V, T, N) = 3N fdre- "1

(48)

NI!A3N fkx( < )
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where h is Planck's constant, A = h/(2wmkT) 12 , and where in the second
line the integration over the momenta has been carried out. Z is
called the partition function. Comparison with the thermodynamic
formulas then shows that:

(49) W(V, T, N)= -kln Z

is the (Helmholtz) free energy, from which all other macroscopic
quantities follow. Especially:

(50)W '

R=V'T- C T,= Or'

and so on. In Chapter 11 we will show that for large N and V,
v = VIN fixed:

(51) WP(V, T, N) = N#(v, T)

from which (47) follows.



NOTES ON CHAPTER I

1. For a critical discussion of the foundations of statistical mechanics
the article of P. and T. Ehrenfest (Begriffliche Grundlagen der Statis-
tischen Auffassung in der Mechanik, Enzyclopidie der Math. Wiss.
Vol. IV, Art. 32, 1912), is still indispensable. It is now also available
in English translation (by M. J. Moravcsik, Cornell University Press,
1959). For a recent account and for the recent literature see for
instance A. M uinster, Prinzipien der Statistischen Mechanik, Handbuch
der Physik, Vol. 111/2, 1959.

The difference in attitude with respect to the foundations is for
instance illustrated by the fact that a mathematician (e.g. Khinchin,
see his book: Mathematical Foundations of Statistical Mechanics,
translated by G. Gamov, Dover reprint, 1949), is inclined to look
upon the ergodic theorems of Birkhoff e.o. as the proper basis for
the theory, while a physicist is often inclined to think that these
theorems are either almost obvious or not really essential. This is for
instance the view expressed by Landau and Lifshitz in their excellent
book Statistical Physics (Pergamon Press, London, 1958). These
authors start from the beginning not with a closed system, but with a
system interacting with a large heat reservoir. Other physicists (e.g.
Tolman in his well known book, The Principles of Statistical Mechanics
(Oxford, 1938)) more or less postulate the microcanonical ensemble as
the representation of a closed system in thermal equilibrium. It is
true that in either of these two ways one can avoid the vexing problem
of the approach to equilibrium while one keeps all that is needed for
the treatment of the problems of the equilibrium theory. However,
it seems to us that the goal should be an unified treatment of both
equilibrium and non-equilibrium statistical mechanics. To do this,
one cannot avoid the ergodic problem, and the Birkhoff ergodic
theorems then become an important first step, which however does not
exhaust the subject!

2. The assumptions of a hard core and of a finite range are only
made in order to have a definite mathematical model for the inter-
molecular potential. From the quantum theory of the van der
Waals' forces between neutral molecules it only follows that at short
distances one has a very sharp repulsion while at larger distances

25
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there is an attraction which goes to zero as I/,r. Since the theory
does not give an explicit expression for 0(r) it is customary to use
simple semi-empirical formulas, as fo6r instance the so-called Lennard-
Jones (12, 6) potential: (I ,I
(a) 4(r) = 4 I J(r/)12 (rl/')6
which represents the two features of 0(r) which the quantum theory
predicts. We will come back to this in Chapter i1.

3. The theorem of Liouville proves that the volume in phase-space
is a so-called integral invariant of the motion. It is well known that
the volume is only one of a series of such integral invariants which
were discovered by Poincare. One can prove that for any ensemble
flow and for any s such that I < s < n:

(b) D f f dq,1 dp,1 dqI dp424 dq.. dp. = O.

In here the integral goes over a 2s-dimensional surface and the sum
goes over all ,C, different combinations of the indices i,. • .. Eq. (b)
states that the integral does not change if one moves with the fluid.
For s = n Eq. (b) becomes the Liouville theorem in the Lagrangian
form. Compare E. T. Whittaker, Anab'tical Dynamics, 4th ed.
(Cambridge University Press, Cambridge, 1960), Chapter 10, or for a
more succinct discussion H. Goldstein, Classical Mechanics (Addison-
Wesley Press, Cambridge, Massachusetts, 1950), pp. 247-250.

One might well ask the reason why the particular case of (b) repre-
sented by the Liouville theorem plays such a special role in statistical
mechanics. We think the simple answer is that the Liouville theorem
is the only invariance theorem which affects the change of the density
p. Only for singular density distributions, in which the members of
the ensemble would be distributed over surfaces of dimensionality
less than 2n, would the more general invariance properties (b) be of
importance.

4. Proof of the Poincar6 recurrence theorem. We follow the
presentation by M. Kac in the Boulder lectures of 1957 (Probability
and related topics in physical sciences, p. 63). Let A be the region on
the energysurface H = E around the initial point P (see Fig. 2). If
we follow all the points of A in their motion, then it is easy to show
that:

(c) I(A) = f fIgrad HI
A
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remains the same. To see this, consider two energysurfaces H = E
and H = E + JE. If Jn is the normal distance between these two
surfaces, then according to Liouville the cylindrical volume:

will be conserved. Since JE = Igrad Hldn and 4E is fixed this
implies that (c) remains constant. Call IA(A) the measure of the region
A. This is therefore a positive and finite number associated with A
which is conserved in the streaming over the energysurface. Since
the total area of the energysurface is finite because of the boundedness
of the motion also the total measure of the energysurface will be finite.

Suppose now that there are points in A which in their motion would
never come back to A and that there are so many of such points that
they would fill a subregion B in A, which has a finite measure. We
will prove that this is impossible. Follow namely the region B in its
motion and consider the corresponding regions B,, B 2,... occupied
by the points of B at the later times 4, 24A ... If J is chosen large
enough so that B and B, do not overlap it follows that none of the
regions B, B1, B2,, overlap. To see this note that if say B, and
B,., A had points in common, then from the unicity of the motion (the
impossibility of the crossing of two streamlines) it follows by tracing
the motion backwards that also B, -, and B,. A, - must have points
in common. Continuing this argument one would end up with the
statement that B itself must have points in common with B4, which
means that B contains points which after the time k4 would have
returned to A. But this is contrary to the supposition that B is a
region containing all points which never come back. If the regions
B, B,, B2', - do not overlap, then since p(B) = pA(B1 ) = IA(B2 ) =.

the total measure of all these regions would be infinite, which is
impossible since the measure of the total energysurface is finite.
Hence one concludes that the measure of all points in A, which will
never return to A must be zero, which is the Poincar6 theorem.

5. The proof can be given with various degrees of precision. The
simplest way, following Boltzmann and Tolman (Principles of Statis-
tical Mechanics, p. 79) is to take the logarithm of W and to apply the
Stirling approximation in the weak form:
(d) log in! = it log n - it.
One then gets:

(e) log W = NlogN - nnlogn, + >n, logto,.
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Varying the n, by An, one obtains:

( C) lo g W + .W . n ,( - lo g n , - I + lo g - + . . . .

W 2 n

The An, have to fulfill the subsidiary conditions:

A4n, = 0 E, End, = o
i I

because N and E are given. Multiplying these conditions with the
Lagrange multipliers (log A + I) and (-Pi) respectively, and adding
the result to (f), one sees that the first variation vanishes for the set
fulfilling the conditions:

-lognt, + logA + log w l,- = 0
or:

fi, = Aw, e-fi,.

That for this set W is a very sharp maximum follows from (f) since for
this set:

SW+ AW I 2. _ n,2
(g) o - Ný (4n11,,) 2>av

if W is the value of W for nt = n,. Clearly if N is very large then
even a very small average relative deviation '4 n/i,' from the A, will
reduce the corresponding volume enormously.

From this proof we see that a more correct statement of the theorem
is that the M.B. distribution, together with those states for which

occupy almost all of the energy shell.

6. Requirement (a) expresses the property that any macroscopic
description must have, namely that it must be insensitive to small
changes in the position of the phase point P. That such a "coarse
graining" of the P-space is necessary for the whole argument was
especially emphasized by P. and T. Ehrenfest (I.c. Note I). One
may say that this coarse graining depends on the observer through his
choice of the macroscopic variables. On the other hand (b) can be
looked upon as the requirement imposed by the system (mainly
because of the fact that N is very large) on the choice of its macro-
scopic description.
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7. See Khinchin, Statistical Mechanics, Chapter 11, §5, or E. Hopf,
Ergodentheorie (Berlin, 1937), or P. R. Halmos, Lectures on ergodic
theory (Publications of the Mathematical Society of Japan, no. 3,
1956), also for the further mathematical literature. In the following
the word "almost" means as usual "except possibly for a set of
measure zero".

8. In the physical literature the same idea is expressed by saying
that the system must be quasi-ergodic. (See P. and T. Ehrenfest,
i.e., also for the discussion and criticism of the older ergodic hypo-
thesis of Boltzmann.) By this one means that the trajectory starting
from almost any point P will cross in the course of time any region
around any' point Q of the energysurface. A metrically transitive
system is obviously quasi-ergodic, but the inverse is not necessarily
true. It may be that the energysurface can be divided in two sets
both of finite measure and so interwoven that the points in each set
are everywhere dense on the surface. If the orbits starting from points
in one set stay in that set then the system is clearly not metrically
transitive although it is obviously quasi-ergodic. From the quasi-
ergodic property Eq. (19) cannot be deduced. This was attempted
by A. Rosenthal (Ann. Physik 43 (1914) 894) and the error was pointed
out by A. Melamit (Acta Phys. Polon. 1 (1932) 281).

9. The best known example is the motion of a mass point on a
surface of constant negative curvature. That the flow defined by the
geodesics on such a surface is metrically transitive was first proved by
G. A. Hedlund in 1934 (Ann. of Math. 35 (1934) 787). Compare
also E. Hopf, Ergodentheorie, Chapter V, and for a simplified proof
G. A. Hedlund, Amer. J. Math. 62 (1940) 233.

There is also a paper by Fermi (Physik. Z. 24 (1923) 261) in which a
proof is presented of the quasi ergodicity of so-called canonical normal
systems with more than two degrees of freedom. These systems were
considered by Poincard (Les Methodes Nouvelles de la Mecanique
Celeste, Vol. i, Chapter 5) and they are essentially non-degenerate
multiply periodic systems which are perturbed by a potential which is
periodic in the angle variables. They include therefore a wide class
of mechanical systems, and it would be of great interest to know
whether Fermi's argument could be made into a rigorous proof of
the metrical transitivity of these systems.

10. Eq. (19) is related to a theorem proved by M. Kac (Bull. Amer.
Math. Soc. 53 (1947) 1002) about the average recurrence time. Con-
sider again a discrete set of time points 4, 2,,... as in the proof of
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the Poincar6 theorem (Note 4) and an area A on the energysurface.
Let n(P),4 be the first time for a point P in A to return to A, so that
P, c A. Then for a metrically transitive system Kac proves that the
average recurrence time defined by:

id = -.4 ..f-f n(P)
A

is determined only by the area of A and in fact is equal to (VI V(A)) J.
The smaller the area A is, the longer the average recurrence time will
be, and the shorter (according to Eq. (19)) the point will spend in
the area A.

11. The notion of a normal property of a system was introduced by
Jeans (Dynamical Theory of Gases, 3rd ed., 1921, p. 74), and was
further discussed by Fowler (Statistical Mechanics, Cambridge, 1929,
§1.4, p. 8). We think that the definition used in the text expresses more
precisely what these authors had in mind.

12. This can also be expressed in the following way. Since D(P, 0)
corresponds to a given set of values yo, of the macroscopic variables
at t = 0, one finds by integrating D(P, t) over the different regions on
the energy shell corresponding to the different sets of values of the
yi, the conditional probability P(jo, I.,, t) that at time t the macro-
scopic variables have the values y, if at t = 0 they have the values
y10,. For t - wo, P(.• 0

)jy,, t) '( Wy),Y2.. '), where W(O, Y2"'. ) is
determiued by the volume of the energy shell corresponding to the
set of values.i'•, ' ' -. Because for large N there is one set of values
of the Y, corresponding to an overwhelmingly largest volume, the
function W(y,y.. , .) will be very sharply peaked at this equilibrium
set of values of the v,.

Formulated in this way the theory becomes completely similar to
the theory of stationary stochastic processes.

13. This was done first by J. von Neumann (Z. Physik. 57 (1929)
80). For a discussion and criticism of this concept see the article by
M. Fierz in the Memorial Volume to Wolfgang Pauli (Interscience
Publishers, New York, 1960).

14. It should be pointed out that this terminology is not generally
used. For instance R. H. Fowler and E. A. Guggenheim (Statistical
Thermodynamics, Cambridge, 1939, p. 56) call the postulate of the
existence of temperature the zeroth law of thermodynamics. Since the
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notion of temperature depends, besides on the existence of thermo-
dynamic equilibrium, on the transitive property of the equilibrium state,
and since for the statistical interpretation of the notion of temperature
one needs the canonical ensemble, it seems to us preferable to reserve
the term zeroth law to the fundamental fact of the approach to equili-
brium of a closed system.

15. See for instance: Boltzmann, Wissenschaftliche Abhandlungen,
Vol. I, p. 284; G. Krutkow, Z. Physik. 81 (1933) 377; Khinchin,
Statistical Mechanics, Chapter 5, §19; H. Grad, Comm. Pure Appl.
Math. 5 (1952) 455.

16. It seems very likely therefore that for a system with a large
number of molecules the macroscopic properties of the equilibrium
state can be obtained either from the canonical or from the micro-
canonical ensemble and that the results will always be the same. From
the point of view of thermodynamics the difference between the two
ensembles lies only in the choice of the basic thermodynamic character-
istic function and in the corresponding choice of the macroscopic
variables. It is difficult though to prove this rigorously and in all
generality, so that it should be verified for any specific problem.

17. This was pointed out clearly in the basic paper by P. Ehrenfest
and V. Trkal (Ann. Physik. 65 (1921) 609). The neglect of this point
has led to a great deal of discussion and to the so-called " N! " con-
troversy. See for instance E. Schrodinger, Statistical Thermodynamics
(Cambridge University Press, 1946) and 0. Stern, Revs. Modern
Phys. 11 (1949) 534.



CHAPTER II

Theory of the Non-Ideal Gas

1. The general problem. We have seen that by computing the parti-
tion function Z(V, T, N) we should in principle be able to calculate
all the macroscopic equilibrium properties of the system when the
intermolecular forces are known. Looking now at the experimental

P

S T>Tcrit.

I %

V2  V1  V

Figure I

facts, this implies that we should be able to explain the following
phenomena:

(a) The deviations from the ideal gas laws which occur when at fixed
temperature the volume V is no longer very large compared to Nr•
(r, = range of the intermolecular force).

(b) The condensation phenomenon. At low enough temperatures
any gas starts to condense at a critical density I/t',, which shows itself
in the isotherm by a sharp discontinuity in the slope (see Fig. I). For
v < vl the pressure stays strictly constant (vapour-liquid equilibrium)
till at r2 one has only the liquid phase. Here there is a second sharp

32
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discontinuity in the slope of the isotherm, and for v < v2 the isotherm
rises steeply corresponding to the small compressibility of all
liquids.

(c) The existence of a critical temperature T,,,,. Again for all sub-
stances the condensation phenomenon only occurs for T < Tcrt. If
T approaches Tcrlt the horizontal portion of the isotherm becomes
shorter and it disappears in the critical point C. For T > T,,,t there
is no longer a discontinuity in the isotherm.

There are other general phenomena. At still smaller volumes and
probably at any temperature the substance solidifies, and one has the
corresponding solid-liquid and solid-vapour equilibria.' But the
explanation of these phenomena from the basic integral (1, 48) for
Z(V, T, N) is still so far from being accomplished that I will not
bother the reader with other experimental facts. Before giving a
summary of what has been accomplished, let us look at the historical
background.

2. The theory of van der Waals. The first great advance in the
understanding of the properties of gases and liquids was made by
van der Waals in his famous Leiden dissertation of 1873. Van der
Waals tried to take into account the effect of the intermolecular
force (attraction at large distance, sharp repulsion at short distance)
on the equation of state of the gas and hc arrived at the famous
equation:

(!) (p + -p)(V- b) = NkT

where a is a measure of the attractive, b of the repulsive forces.2 It
represents qualitatively all known properties of the gas and liquid
phase and especially it "explains" the existence of two phases for
T < Trj, and the existence of a critical point. This is shown in the
following way. Since (I) is of the third degree in V, one easily sees
that for low enough temperature the isotherm is not monotomic but
shows a wiggle (see Fig. 2). Between the points A and B this must
represent an unstable state and hence van der Waals says the system
will split in two phases. One now needs a thermodynamic argument
(Maxwell rule or equal area rule) to find the volumes V1, V2 of the
saturated vapour and liquid and the constant saturated vapour
pressure p.,. The wiggle disappears for T > T,,,. The critical point
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C is fixed by the fact that there the isotherm has an horizontal inflexion
point, so that:

gV = 0 - 0l

from which follows:
a 8a

(2) V= 3b, pc = a R' = 8a

P

\CriticoI point

Tcrit.

Ps 5 I'

SA TTcrit.

V2  VI V

Figure 2

I will not try to review the further remarkable successes of the van der
Waals equation. In fact, they were so remarkable that they practi-
cally killed the subject for more than fifty years! Let me only still
mention that a consequence of (I) is the so-called law of corresponding
states, which says that if one measures p, V and T with the critical
quantities (2) as units, the resulting equation of state is the same for
all substances. This law, which was instrumental in the precise
predictions of Kamerlingh Onnes of all the factors involved in the first
liquefaction of Helium, follows from (I) since (I) involves only two
constants a and h. The rather general validity of the law indicates
that the intermolecular potentials, say for all inert gases, can all be
represented by the same equation if one only adjusts the units of
length and energy. A good representation of the potential (we will
soon see how this can be checked) is for instance the (12,6) Lennard-
Jones potential: (see Fig. 3)

0(r) = 4r[('- -()]
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From a simple dimensional argument it then follows strictly from
Z( V, T, N) that if one measures all lengths in units a, and the tempera-
ture in units e/k the reduced equation of state should be universal.

01

r

Figure 3

In turn this means that the ratios V/Noa and kTI./ should be universal.
In fact for the inert gases one finds:

V, ~ kT,2•Na/ =1.50, - 1.25

which allows a quick estimate of the strength and range of the inter-
molecular potential from the critical quantities.

To come now to the criticism of the van der Waals equation, the
point which shows most clearly that the van der Waals equation can
not be considered as in any way final, is that an additional thermo-
dynamic argument is required to fix the saturated vapour pressure.
An autonomous statistical theory of the non-ideal gas and the liquid
state should not require any thermodynamics. Also, it is clear that
since from Z( V, T, N) one should find the state of thermodynamic
equilibrium it should be impossible in any bonafide derivation of the
equation of state from Z to find unstable or metastable states of the
system. In fact we will show in Chapter III that the pressure as
derived from Z must be a monotonic non-increasing function of the
volume. All "proofs% of the van der Waals and similar equations of
state contain therefore necessarily unallowed extrapolations or
approximations. Finally there is the failure of the van der Waals
equation to describe the phenomena quantitatively correct, although
it is unsurpassed qualitatively. Already in 1901, this failure led
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f(r)

-l

Figure 4

Kamerlingh Onnes to abandon all closed expressions for the equation
of state and to represent the data by a series expansion of the form:

(3) -= I + -D + E(-T) +
RT V V

This is called the virial expansion, B(T) is the second virial coefficient,
C(T) the third, etc. The representation (3) was not only desperation,
but it contained the insight that the successive deviations from the
ideal gas law will give information about the interaction of the mole-
cules in pairs, triples, etc. This has been confirmed by the theoretical
derivation of (3) from the partition function Z, first given in all
generality by Ursell and Mayer around 1930.' It is a part of the
theory which is in a really satisfactory state.

3. The Mayer trick and the connection with the theory of linear graphs.
As a first step in the discussion of Z( V, T, N) following Mayer, we
introduce:

(4, I, f(lr, - r,I)= exp [-_ 4IT r, - r,,)] -

and rewrite Eq. (48) of Chapter I in the form:

(5) Z(V, T, N) =1*1... drN H ( +f).

The general form of the function f(r) is shown in Fig. 4. Since fi
vanishes when 1r, - rj is greater than the range r, of the forces, an
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expansion of the product in (5) will lead to an expansion of Z in
powers of V. To see this more in detail, represent each term in the
expansion of the product by a linear graph in which each particle is
indicated by a point and each factor fJ, by a line between the points
i andj. For instance for N = 3:

3

H (l+;J)= I + J12 + A3 + f 23 +
<1<-2ol / o

0 0 .\ 0 -------a

2 3 2 3 2 3 2 3

(6)

+ A1 2f24 + f 2f13 + fl 3f 23 + fzAJ 23f3 14L A A
2 3 2 3 2 3 2 3

where we have drawn the graph under each term. More symbolically
for N = 4:

(I +J,) =: + + + +
(!) (6) (3) (12) (4)

(7)

(12) (4) (12) (3) (6) (1)

where the numbers indicate the number of terms represented by each
graph if one labels the four points.

Each term in the expansion of (5) corresponds therefore to a
particular graph of N labelled points, which in general will consist of
a number of disjoint connected parts. In fact all labelled N-point
graphs from separate points to the complete graph with N(N - 1)/2
lines will appear. Now it is clear that each term in the expansion
will lead to a product of integrals, one for each connected part of the
corresponding graph. For example, a point will give the integral:

dr= V
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a line (i,j) the integral:

f, fv dr, drifil

a triangle (i, 1, k) the integral:

(8) fV f1 dr1 'kkflfkk

and so on. We will call a connected graph also sometimes a cluster
and the corresponding integral like (8) a cluster integral. The advan-
tage of such an expansion of the integrand in (5) is that because of the
short range of the forces (beyond which the fil are zero), the leading
term of each cluster integral is proportional to V. It is this feature
which has allowed Ursell and Mayer to derive the virial expansion (3)
and to find explicit expressions for the virial coefficients in terms of
the functions f,.

4. Some notions of the theory of linear graphs. Since we need some
of the simple notions of the theory of graphs, and since part of the
terminology I am used to is semi-private, let me collect here all that
we will need.'

A linear graph is a collection of points with lines between certain
pairs of points. In general there may be more than one line connect-
ing two points and also loops may occur. If any two points are
connected by at most one line and if there are no loops we call the
graph simple (see Fig. 5). We will mainly have to deal with such
graphs. A subset of points which are joined successively by lines is
called a path connecting the initial and final point. If the final point
coincides with the initial point we speak of a cycle. A connected
graph is one in which there is at least one path between any two
points. Otherwise the graph is disconnected. It is clearly sufficient
to study connected graphs. An articulation point is a point where a

(a) (b)
Figure 5. (a) simple graphs; (b) not simple graphs
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graph can be cut into two or more disconnected parts. A graph

without articulation points I call a star (see Fig. 6). A general con-
nected graph can be considered as built up out of the constituent
stars hung together at the articulation points. If the constituent
stars are just single lines we call the graph a Cayley tree. It can
also be characterized as a connected graph without cycles, If the
stars are polygons we will speak of a Husimi tree. It is a connected
graph in which each line belongs to at most one cycle (see Fig. 7).
If more general types of stars are used we will speak of star trees. A
pure star tree is one which consists of only one type of star; otherwise
the star tree is mixed. Of course if no restrictions are made on the
type of stars then the notions of star tree and of connected graph are
synonymous.

In the physical applications graphs usually appear as a symboliza-
tion of the different terms in a successive approximation method and
the number of points usually determines the order of the approxima-
tion. In each successive approximation method one can therefore
distinguish two problems:

(a) The combinatorial problem: how many "different" terms are
there in nth order ? This can then be expressed by asking how many

(b)
(a) (b)

Figure 6. (a) graph with articulation points (small circles); (b) a star

(a) (b) (C)

Figure 7. (a) Cayley tree. (b) Mixed Husimi tree. (c) Pure star tree.
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graphs of n points and of a specific type (as determined by the problem)
there are.

(b) The integral problem: what is the contribution or the weight
of each graph?

In the combinatorial problem one must distinguish between labelled
graphs and free (or topological) graphs. In a labelled graph different
points are distinguished by some index. In a free graph the points
are regarded as not distinguishable. Of fundamental importance is
the number of different labelled graphs corresponding to a given free
graph. To enumerate the possibilities one needs the notion of the
group of a graph. This is defined as the group of automorphisms of
the graph, that is the group of the one to one correspondences of the
points of the graph which leave the connections invariant. The group
can be considered as a permutation group of the points. For example,
for an n-gon the group is the dihedral group of order 2n, and for a
so-called complete graph of n points (i.e., the graph where all pairs of
points are joined by lines) the group is the symmetric group of degree
n. The order of the group is the symmetry number s of the graph.
If one has a free graph of p points and symmetry number s, then there
are clearly p!/s different ways in which one can label the points so that
one obtains p!/s different labelled graphs.

5. The first Mayer theorem. We now return to the calculation of
the partition function Z( V, T, N) as given by (5) and we will consider
that the product is expanded and that each term is symbolized by a
graph of N labelled points as explained in §3. We also saw that then
each term becomes a product of factors each referring to a disjoint
connected part of the graph. Mayer showed that the resulting sum
of products can be put in a simple form. To derive this, it is illumin-
ating to consider Mayer's result as a special case of the following
general theorem."

THEORFM I. Consider the quantity FN defined by:

(9) F= W(GN)
(GN)

where the sum goes over all graphs GN (connected or disconnected) with
N labelled points, and where W(GN) is a "weight" which is a function
of the graph GN and which is supposed to have the properties:

(a) W(GN) is independent of the labelling of the N points, which
means that it only depends on the free graph.

(b) W(GN) CI W(C) where the product goes over all the disjoint
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connected parts C, of GN.
Introduce further the quantity:

(10) f, = W(C,)
(C,#)

where the sum runs over all connected graphs with labelled points. The
theorem then states that:

(II) I + F(x) = els)

where F(x) and f(x) are the generating functions of the quantities FN
and f, defined by:

XIV(12) Fix) = F N W1,. ' f(x) f= F

The proof of the theorem depends on the following fundamental
lemma, which we will use over and over again, so that we will formu-
late and prove it in all generality.

PRODUCT THEOREM. Consider two arbitrary (finite or infinite)
collections .) and N1 of free graphs and forrm the product collection
.tx (4 which consists of all possible pairs of graphs one from .V and
one from 01. Assign weights to each of the graphs in .t and oi, and

assign to each graph ofthe product collection the product of the weights
of the two graphs of which it is formed, if now we label the graphs in
.J., (4 and .k x 05 in all possible different ways and form generating

functions similar to ( 12) (the upper limit can be finite or infinite), then
the theorem states that the generating function for the product collection
is the product of the generating functions for the two collections .t and 05.

P•aoF. The total weight assigned to all graphs of p points in
collection i) is:

S,2H, = -- h

where the sum goes over all different free graphs of p points in .t and
s, and h, are the symmetry number and the weight of the ith free
graph. Similarly the total weight assigned to all graphs of q points
in collection (4 is:

I 5j

For a pair of graphs (ij) from .) and (4 the symmetry number is
clearly ssi. Note that this is so even when the two graphs i and j
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are identical, because the operation which transposes the two graphs
must not be considered as an element of the group of the product
graph. Since the weight assigned is hdgy, it is clear that the total
weight assigned to all graphs of N points in the product collection
. x (01 is:

P (p + q)!
p+q-N p!q! H q

Hence, defining the generating functions:

H(x)= : H, G(x) = G,
P P q q!

P(x) = x

it follows that:
P(x) = H(x)G(x).

This proof makes clear why it is necessary to define the generating
functions with the factorials in the denominator.

From the product theorem the proof of Theorem 1, that is of Eq.
(i1), is immediate. If F,.(x) is the generating function for graphs of
in disjoint parts then:
(I13) F(x) = F.(x)

M-=

and from the product theorem follows that:

(14) F.(x) = I [f(x)]'"

where the mn! is required because the in parts are chosen from the
same collection of connected graphs, and any permutation of the m
parts leads to the same disjoint graph. From (13) and (14) Eq. (11)
follows.

Returning after all this to the partition function Z(V, T, N) it is
clear, if one thinks the product expanded, that one can write:

N!I

(GN)

with:

(16) W(GN) ... .. , GrM-
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where the product is over all pairs of points (i, j) which are connected
by a line in GN. Thus if one forms the generating function:

(17) Z.(v, T, Z) = : Z(V, T, NX) 3 z)"
N-0

then (except for the A3, introduced to cancel the A3N in (16)) Zr is
clearly similar to I + F(x) if by convention one puts Z(V, 7T, 0) = 1.
The function Zr(V, 7T, z) is called the grand canonical partition
function to distinguish it from the ordinary or canonical partition
function Z( V, 7T, N).

Since clearly the weight W(GN) defined by (16) fulfills both of the
conditions required for the applicability of Theorem I, one can
express Z( V, 7', z) in terms of the corresponding function for connected
graphs. Calling (to conform with the usual notation):

where the product goes over all fA corresponding to lines in the
connected graph C, and the sum goes over all connected graphs with
I labelled points, and calling:
(1 9) X(V, 7T, Z) = bj( V, T)z';

I-1

then clearly VX( V, 7, :) is similar to the functionf(x) of Theorem I,
and hence:
(20) Zgr( V, 7T, z) - exp{ VX( V, 7T, z)}

which is the first Mayer relation.7

6. The Mayer equations. From (17) and (20) it follows that:

(21) A3 ,Z(V,T,N)J dz z-expVx(V, T,z)}.

Now note that because of the hard core assumption for the inter-
molecular potential (see Chapter 1, §1), Z(V, T, N) = 0 if N >
V/(4,fr1/3), so that Zr(V, 7T, z) is a polynomial in : with positive
coefficients. Therefore x(V, 7T, z) will be a monotonic increasing
function of z along the positive real axis. Since z - N - is a sharply
decreasing function, the integrand in (21) will have a steep saddlepoint
at some point zo on the positive real axis, in the limit that N and V
are large such that Nv = V with v fixed. In this limit one can evaluate
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(21) by the method of steepest descent. Call:

f(z) = - In z + vX(Nv, T, z);

then one gets in the usual way:

eNI(bo)

(22) A3NZ {27rNjf(zo))}" 2

where :, is determined by f'(zo) = 0 or:

(23) -- z x 7- x(Nv, T, zo).

Now note that for large V and fixed I, b1( V, T) becomes independent
of V. This is due to the fact that the integrand in (18) consists of a
connected set of factors f,, so that, keeping say r, fixed, the integrand
will be zero outside a sphere around r, of radius of order I times the
range of the forces. Integrating finally over r i, one sees that because
of the factor I/V in (18) the limit:

(24) Lim hj(N', T) = h1(T)
N .,*

exists. Let us now assume that the series (19) for x(Nv, T, z) has a
finite radius of convergence which for increasing N has a finite lower
bound. Then also the limit series:

(25) Lim x(Nr, T, z) - R(T, z) = h, b(T)z'

will have a finite radius of convergence. Since from (23) follows that
for increasing r, :o goes to zero, we can make v so large that z0 is
inside the circle of convergence of R(T, :). One then obtains from
(22) that for large N:

(26) 'I = - kTInZ = N[ 00% T) + O(1-n-)

with:

(27) 0(r, T) = -kTzR(T, zo) - In (Alzo)}.

This verifies the statement made at the end of Chapter I (Eq. (51))
that in the limit the free energy 'P is proportional to N, so that it is
an extensive variable as desired. In (27) z. is determined by:
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(28) =Zo -(T, Zo)

or:

(A) _

For the equation of state one then obtains:

p Lo = kT R(T, zo) + V -zo I zo)J

so by using (28):

(B) kT =;(T, Zo) = b,(T)z'.
1=1

The equations (A) and (B) are the Mayer equations. They determine
parametrically the relation between p and v, that is the equation of
state. Note still that:
(29) '= + pr = kTIn (A3 z0 )

which shows the thermodynamic meaning of z0; It is called the chemical
potential.

Since b, - I one gets from (A) that for very large r, o :- I/v0
and then from (B) the ideal gas law follows. Eliminating in this way
the z. by successive approximation one obtains the Kamerlingh Onnes
expansion (3) with:

B(T) = - Nb,(T) N _N2 f,(rf1)
(30)

= 2wN drr2 (l - e 0
(-I lr ),

C(T) - N2[-2h,(T) + 4(b2)21

N - yf fhr,3dr,,.f,2fi3f
2 3(31)

(31)8 r2 N 2 2 2(o"f drjr, f": dr2r2 fo dO sin Of(r1 )f(r2 )

•f((r~f + r2 - 2rr 2 cos 8)1'2)

and so on. This shows explicitly how to find the first few virial
coefficients in terms of the intermolecular potential.

The virial coefficients and especially B(T) have been one of the best
sources of our knowledge of the intermolecular or van der Waals'
forces. To get some idea of the temperature dependence of B(T),
suppose that 0(r) consists of a hard core plus an attraction - r-1
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(see Fig. 8). Expanding the exponential in (30) one gets approxi-
mately

B = b -- RT

with b = 2,Nro/3, a = 21,N 2A/3dI', which is precisely what one would
obtain from the van der Waals equation. As every consequence

a-ro-.

Figure 8

from that equation, this equation represents qualitatively the observed
dependence of B on T (see Fig. 9). Unfortunately B(T) does not
determine 0(r) uniquely, so that one can only make some Ansatz for

T

Figure 9

,(r) such as the (12-6) Lennard-Jones potential, and then see whether one
can adapt the constants F and a so as to reproduce the observed B(T).
A great deal of work8 has been done in this direction with quite
satisfactory results, so that at least for the inert gases one has a good
idea of the shape and the strength of the intermolecular force 0(r).
With the 0(r) obtained from B(T) one then can calculate C(T) and the
check with the experimental values is again satisfactory. This is one
of the strong arguments for the assumption that the intermolecular
forces are pair forces.
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7. The second Mayer theorem. The elimination of z0 between the
two Mayer equations (A) and (B) can be done in general and this
leads to a striking general expression for the nth virial coefficient
which is also due to Mayer. It is based on a theorem, which again
we will first formulate and prove in a more general form.

THEOREM 11. Let the weight W(C,) associated with a connected graph
with p labelled points have the properties:

(a) W(C,) is independent of the labelling of the points.
(b) W(C,) = 11 W(S.), where the product goes over all the stars

S. out of which Cr is constructed.
Let:

(32) f, = > W(C,), r. = > W(S.)
(Ce) fS3 )

where the sums go over all difterent labelled connected graphs of p
points, resp. stars of m points. Then the theorem states that:

(33) T(z) = z exp{d,--•)}

where:

(34) T(:) = z ±f Pn

(35) S(y) = r

PROOF. Consider first, instead of general connected graphs, pure
star trees in which the single constituent star has q points, weight W
and symmetry number s. The generating function S(y) consists then
of one term, namely:

(36) S(y) = i-W y, = Wy_
s W. s

To construct all possible star trees, it is simplest to consider so-called
rooted star trees, in which one point (the root) is given besides its
label a special designation, say a color. We now build up the star
tree from this root. In the rooted star tree, call the stars which have
the root point in common the main leaves. If T(:) is the generating
function for the rooted star trees, then

(37) T(:) = W T.(Z)
n=O



48 THEORY OF THE NON-IDEAL GAS

where T.(z) is the generating function for rooted star trees with n
main leaves, and To(z) z counts the single point.

Now we can construct rooted star trees with n main leaves by
selecting n rooted star trees with one main leaf and hanging them all
together on the root. From the product theorem follows:

(38) T .(z) = z

since Tl(:)/: is the generating function for rooted star trees with one
main leaf in which the root point is not counted; the factor z accounts
for the common root point and the factor n! is needed because the
in parts are chosen from the same collection of rooted star trees with
one main leaf and any permutation of the n parts leads to the same
star tree with it main leaves.

Next one can construct a rooted star tree with one main leaf by
hanging (q - I) general rooted star trees with their roots on the
(q - I) points of the main leaf which are different from the root.
Hence applying again the product theorem one has:

(39) Tl(:) = _-W [T(:)Il_
S

The factor : accounts for the root and W for the weight of the main
leaf. The factor q is needed since one can choose any point of the
single main leaf as the root point. Finally the factor I/s accounts
for the fact that there are s equivalent arrangements of root and
(q - I) rooted star trees on the main leaf because of its symmetry.

Combining (37), (38) and (39) one gets:

(40) T(-) = z exp-W. T-
- ~S

and from (36) one sees that in this case:
qW Tq_ dS(T)

S dT

The generalization to mixed star trees and therefore to general
connected graphs is quite straightforward. In building up the rooted
star trees out of rooted star trees with one main leaf, one must now
distinguish between the different types of stars which can be the main
leaf. Instead of (39) one gets:

T,(z) = [T(z)]q, -I1
S,
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where the sum goes over all types of stars and where each term in the
sum counts rooted star trees with one main leaf which is a star of the
ith type. Instead of (40) one gets:

T(z) z exp { -'W T1}

and since:
s, - y , l f.l

m 2 M! fqi .
this leads to (33).

Finally the relation:

T(z) = zdf
Zd

between the generating functions f(z) and T(z) of connected graphs
and rooted connected graphs is obvious since with labelled graphs the
special designation of any point as the root point leads to a different
rooted graph, so that since the weight is independent of the labelling
the total weight of the rooted connected graphs of p points must be
PfH.9

Let us now return to the Mayer equations. The Mayer weight
associated with a connected graph C, of p points:

(41) ~W(CP) =j 1 /(41) f{ , p . . drý...U, I I,
' (,p

has for large V (strictly only in the limit V - c) the two properties
required for the applicability of Theorem If. The first property is
obvious. To prove the second property one integrates in (41) first
over all the points of the end point stars in C, except the articulation
points which connect them with the rest of the star tree. Since the
f, depend only on the relative coordinates ri - r, the result of the
integration gives for large V the product of the weights of the end
point stars, which will be independent of the coordinates of the articu-
lation points. Continuing this procedure one clearly gets that W(Cp)
is the product of the weights of all the stars out of which Cr is con-
structed.

With (41) T(z) becomes z dkl/dz which is equal to 1 I/ according to
Mayer's equation (A). Calling:

(42) Bm-, Lim I fr .d. V(m - 1)f ... ,... (S,,) .:,
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where the sum goes over all stars with m labelled points, clearly the
total weight r. becomes (m - I)!#. 1 and hence:

S'(y) d . d m®

(43)

Eq. (34) therefore becomes:

H,(44) = zo exp[()

which is the expression of the second Mayer theorem. One can say
that in (44) by expressing z in I/v one has inverted the first Mayer
equation (A). From Mayer's equation (B) one then obtains (calling
I/v = x)

P = X Zo) =xdz d= -k-T z(O d X

(45) = fo e"' d(ye-p) = x - f: dy yOk(y)

- n I
P1which is the virial expansion. Clearly the nth virial coefficient is:

(46) n ! Lim 1 . dr,1...dr I -R.f,.

n! V. Vf fý,(S,) S,~

The expressions (30) and (31) for the second and third virial coefficient
are special cases of (46). For the fourth virial coefficient (46) gives:

B4 v- _ fm... fd . Er { V M

(3) (6) (I)

where the numbers refer to the numbers of terms of the types sym-
bolized by the graphs.
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Finally one should emphasize that such a general expression for
the virial coefficients can only be derived when the intermolecular
forces are pair forces or have the additivity properly. For non-
additive forces (and therefore in the quantum theory!) the Mayer
equations (A) and (B) are still valid with the appropriate definition
of the b,, but the virial expansion can only be obtained by the succes-
sive elimination of the parameter zo.

8. The convergence question and the Gaussian model. I mentioned
in §6 that one assumes that the radius of convergence of the series (19)
for x(Nv, T, z) has for increasing N a finite lower bound which is then
the radius of convergence of the Mayer series:

R(T, z) = . hb(T):1
I~ 1

which implies that also the virial series has a finite radius of con-
vergence. I think that all this is very likely to be true but a strict
proof does not exist. 10 It is clear that everything will depend on the
form of the intermolecular force 0(r). If 0(r) has a hard core, then
we saw already that Zr( V, T, z) is a polynomial in z with positive
coefficients starting from one. Since:

X( V, T, Z) = bj( V, Tlz=- In Z( V, T, z)

clearly x( V, T, :) will have for any V a finite radius of convergence,
which is determined by the zero of Zr(z) closest to the origin. What
happens for V -- o, and also for other molecular forces in which
say 0(r) r-" for small r (as in the Lennard-Jones potential), is not
known and seems to me difficult to settle without having an idea
about the behaviour of the b, for large /. For this reason we have
tried to investigate the asymptotic behaviour of the bh for a special
model, the so-called Gaussian model, and although we have not reached
any definite results, it seems to me that the mathematical problems
one runs into are so intriguing, that they warrant a short discussion."

For a purely repulsive potential 0(r), the Mayer function f(r) will
always be negative and will look as shown in Fig. 10. For a soft
repulsion it is then tempting to replace f, by the Gaussian function:

(47) fj = -cxp[-.,r, - r,12].

Mind that this does not correspond to a real physical potential, since
with (47) 0(r) would be temperature dependent. But if we are
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f (r)

r

Soft repulsion

-"�1-t-*.Hord sphere
repulsion

Figure 10

interested only in the behaviour of the gas at fixed temperature, (47)
should represent qualitatively the effect of a soft repulsive potential.

With (47) all cluster integrals can of course be performed. It is
even possible to do this for a finite volume if we put the gas in a
Gaussian vessel, that is if we represent the effect of the walls of the
vessel by a Gaussian potential exp( - fr 2 ), corresponding to a "volume"
(v/#i)3'2 and of course with f << a. However, we have looked mainly
at the limit V - ci:, that is at b1(T). It is easy to show that in this
case the weight (41) becomes:
(48) W(C) ( 2  

3/2(45) w~c ) [d(c,)] ,

where k is the number of lines in C, and where d(C,) is the so-called
graph complexitY. This is defined in terms of the graph matrix
d,,(C), which is a p by p matrix with elements defined by:

- I if the line (ij) occurs in C,
0 otherwise

d,= degree of the point i in Cp, that is the number of lines
incident on i.

It is easy to see that the determinant 11d,11l is zero and that all minors
of order (p - I) are equal. Their common value is the graph com-
plexity. Eq. (48) shows that the weight of the graph becomes smaller
in absolute value the more complex the graph is, which is clearly as
it should be. It is also of interest to note the explicit dependence of
W(C,) on the number of dimensions.
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Many properties of graph matrices are known, but let me only
mention the following two theorems:1 2

(a) The graph complexity d(C€) is equal to the number of labelled
Cayley trees of p points which are subgraphs of C,.

(b) The sum of the complexities for all graphs Cpk of p labelled
points and k lines is given by:

I(pI - 1)( - 2)
(49) • d(C,) = p,- 2  -).

(Cpk) k- p + I

Clearly if we would know the distribution of the values of the graph
complexity for all connected graphs of p points and k lines, then
one would be able to find an explicit expression for bp. In fact, if
n(p, k, d) is the number of graphs of p points, k lines and complexity d,
then from (48) and the definition of b. it follows that:

P=(b"_I _LPIP J, k n(p, k, d)
(50) I p - -) 3,2

kp-1 dI

where:

is the analogue of the van der Waals' b for this case (since b2 = -b)
and where the sum over k goes over all the possible numbers of lines
which can occur in a connected graph of p points. Of course, for
finite p and k only a discrete set of values of d is possible so that
n(p, k, d) is a step function, but if p increases and for k in the middle
of its range actual numerical experience (all complexities for graphs up
to p = 7 have been computed) 13 suggests that n(p, k, d) becomes a
genuine smooth distribution function which in fact seems Gaussian
around its average value. It would be of great interest, I think, if
these statements could be proved. Unfortunately at present all we
know about the distribution are the zeroth and first moments, since:

: n(p, k, d) = Clk
d

where CPk, the number of connected (p, k) graphs can be found from
(c), Note 7, and:

~~dn( ~~ (p -~)P~(( lXi' - 2V

d k -p + t
which is a rewriting of (49). We have been unable to compute higher
moments. Already the second would be worth knowing!
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I. The equilibrium pressures of the solid-vapour (sublimation),
solid-liquid (melting) and liquid-vapour (evaporation) equilibria as
function of the temperature meet in the triple point A and divide the
(p, T) plane into three regions (see Fig. a). We saw that the liquid-
vapour line stops at the critical point. It is therefore possible, by
going around the critical point, to change the vapour into a liquid

P

CriticalSolid Liquid .& point

, %3-ýTripie point

Vapor

T
Figure a

without ever having the two phases at the same time. One can make
a continuous transition from the vapour to the liquid state. At
present it is unknown whether the same is true for the fluid and the
solid state, or in other words whether the melting line AB stops in a
second critical point. It seems unlikely, because, as Landau has
pointed out, a solid and a fluid are qualitatively different. A fluid is
just a very dense gas, but in a solid there is a long range order in the
positions of the molecules, and it is difficult to imagine how this could
develop gradually from the random arrangement of the molecules in
a gas. Experimentally it is known that in some cases the melting line
goes to much higher temperatures than Tent. One can solidify

54



I

NOT7 ON CHAPTER 11 55

Helium by high pressures at 50*K, which is about ten times the critical
temperature.

2. The various "derivations" of the van der Waals equation have
in common that the effect of the repulsive forces (the "b" correction)
and the effect of the attractive forces (the "a" correction) are treated
separately. One can argue for instance as follows:

Omitting the attractive forces and taking the repulsive force as
between elastic spheres of diameter d, the partition function becomes:

(a) z = I ... fdri. ..drN, S(Ir, - r11)

where

S(r,,)={0 if r, <d,
I if r, > d.

This means that one has to find the volume of a 3N dimensional cube
(taking V cubical) from which are excluded the cylindrical regions
Ir, - rj, < d. This is a very difficult problem! However, if V >> Nvo
where vo = 4rd43/3, then in first approximation one can neglect the
overlapping of the action spheres, so that the integral in (a) becomes:

J = V(V - v0XV - 2'o)...(V - (N - I)v0)

= VN I-I(I - -,O)

Hence:

InJ= NIn V + ln V- )

N Nn V - --•

= NIn V - N2"V Nln(V - b)
2V

if b = Nt'0/2 = 4 x proper volume of the molecules. Therefore
J = (V - b)N and we will keep this form even when V is not large
compared to b.

Now, to take into account the attractive forces, one can say that if
the range of these forces is sufficiently long, the average potential
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energy will be - CN2/2 V, since each molecule attracts all molecules
in its action sphere and the number of these molecules will be pro-
portional to the number density NIV. C is a positive constant and
the contribution to the partition function is therefore roughly
exp( +a/VkT) with a = CN2/2. Altogether one gets therefore:

(b) Z = 1 el/Vkr(V - b)N
N !A3 N

and from p = kTb(ln Z)/1 V van der Waals equation follows.

3. This was first pointed out by J. de Boer (Dissertation, Amster-
dam, 1940; Physica 14 (1948) 139). It is important to note that the
mass of the molecule does not affect the equation of state in the
classical theory to which we restrict ourselves. In the quantum
theory this is no longer true. The equation of state, using the same
intermolecular potential, then depends on a third dimensionless
variable, the so-called de Boer parameter:

h
A=(me) 2

See also the dissertation of R. J. Lunbeck (Amsterdam, 1951).

4. H. D. Ursell, Proc. Cambridge Philos. Soc. 23 (1927) 685. The
work of Mayer is summarized in the book of J. E. Mayer and M. G.
Mayer, Statistical Mechanics (Wiley, New York, 1940). For the
generalization to the quantum theory see B. Kahn and G. E. Uhlen-
beck, Physica 5 (1938) 399; B. Kahn (Dissertation, Utrecht, 1938).
For the generalization to the Bose or Fermi statistics see T. D. Lee
and C. N. Yang, Phys. Rev. 113(1959) 1165.

5. Most of the terminology is the same as in the book of Kdnig
(Theorie der Endlichen und Unendlichen Graphen, Leipzig, 1936).
There is no special term for a graph without articulation points, and
it is convenient to have one. The word star and the corresponding
notion of star tree were introduced in our paper on the combinatorial
problems in the theory of graphs (Proc. Nat. Acad. Sci. U.S.A. 42
(1956) 122).

6. The following presentation of the Mayer theory follows a review
article by G. W. Ford and G. E. Uhlenbeck entitled: The theory of
linear graphs with applications to the theory of the virial development
of the properties of gases, which appears in Studies in statistical
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mechanics Vol. I (North Holland Publishing Company, Amsterdam,
1962).

7. If one takes in Theorem I for the weight W, yk, where y is an
arbitrary variable and k is the number of lines in the graph G, or C1,
then it is clear that W fulfills all the requirements, and that therefore
Theorem I is applicable. One obtains:

(W) I + N(x, y) = ••.11

where: 00Xp •P-- 1)/2

(d) N(x,y) = . .Nky,
.P k-

(e) C(x, y) =0x ( ~ -, U1 )

and:

NPk= number of labelled (p, k) graphs (= graphs of p
points and k lines)

(f) = (Ip(P k )/2),

C'k = number of connected, labelled (p, k) graphs.

Eq. (c) was first derived by R. J. Riddell (Dissertation, University of
Michigan, 1951). It allows the calculation of the numbers Cpk in
terms of the known binomial coefficients Npk.

8. For a complete account see the book by J. 0. Hirschfelder,
C. F. Curtiss and R. B. Bird, The Molecular Theory of Gases and
Liquids (Wiley, New York, 1954). A very useful summary of the
theoretical calculations of the virial coefficients is given by T. Kihara,
Revs. Modern Phys. 25 (1953) 831; 27 (1955) 412.

9. By taking as in Note 7 for the weight W, yk (k = number of
lines in the graph) one sees that the two requirements for the weight
W(Cp) are fulfilled so that Theorem 11 is applicable. Writing:

(g) S(x, y) = S! y

p-
2  

k-p-I

where Sk is the number of stars with p labelled points and k lines
(with the convention S21 = I), and putting:

z(x, y) = x x C(x, y)
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where C(x, y) is giY c1i, (c), then Theorem II yields the second Riddell
formula:

(h) -S(z,y) = InZ.(h) x

From (h) one can find S,,, in terms of the C,,. It is not difficult to
show that for large p and k > p In p the numbers Npk, C,, and S~k
are asymptotically equal, so that one can say that for large p and
k > p In p the overwhelming majority of the graphs are stars.

10. For a time the convergence question seemed (even to the
physicist!) of great interest because Mayer, Kahn and Uhlenbeck (see
Note 4 for the literature) had speculated and had tried to prove that
the nearest singularity of R(T, z) on the positive real z-axis (assuming
that there R and d•/dz remain finite) would determine the point of
condensation of the gas. This was strongly suggested by the case of
the ideal Bose gas, which is of course not a special case of the non-
ideal gas theory we have discussed (since the deviations of the ideal
gas laws are in this case due to quantum effects), but which is a case
for which the corresponding b, can be evaluated explicitly. In fact,
already in 1925 Einstein derived for the Bose gas the equations:

I I M ,At

I=!

0)

p -1 .A'
1.1

which have precisely the same form as the Mayer equations if one
puts:

A A30-T1Z X3 b,(T) = -_75-.

Clearly the series:

g(A) =

is convergent up to A = I, which is the nearest singularity on the
positive real axis of the analytic function generated by the series. The
point A = I is a branchpoint of order two and R and dR/dA are finite
at this point. It is known, and it can be proved in various ways, that
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at this point a phase transition occurs, the so-called Bose-Einstein
condensation. For values of v smaller than:

A3  A3

Y1' = ) = 2.612...
the pressure stays strictly constant till v = 0. Also the convergence
of the virial series which follows from (i) by eliminating A has been
investigated and it has been shown (W. H. J. Fuchs, J. Rational
Mech. Anal. 4 (1955) 647) that the virial series converges beyond the
condensation point. In fact Fuchs could show that the radius of
convergence of the virial series (in A3/v) lies between 12.56 and 27.73.

Unfortunately, by now it seems very likely that the connection
between the condensation point and the singularity on the positive
real axis of the function g for the ideal Bose gas is a kind of remarkable
fluke, and that for real gases there is no such a direct connection.
We come back to this point in Chapter Ill.

11. To our knowledge the first use of the Gaussian model was by
E. W. Montroll, T. H. Berlin, and R. W. Hart. The article appears in
Changementsdephases. Soci6ti de Chimie Physique, Paris, 1952, p. 212.

12. The first theorem is due to Kirchhoff (Gesammelte Abhandlungen,
Leipzig, J. Barth, 1882, p. 22). If one takes for C, the complete graph
of p points, which has the complexity:

p- I - I .....- I
-I p-I ...- I =p- 2

-I -i.... p-

then this must therefore be the number of Cayley trees with p labelled
points, which is a well known result first derived by Cayley.

The second theorem is due to G. W. Ford. It can be proved in the
following way. From the Kirchhoff theorem follows that one can
write:

(Cp•) (r,) (c,,):) Ta,

where the first sum is over all Cayley trees of p points and the second
sum is over those (p, k) graphs which contain a given Cayley tree T,.
Now the number of connected graphs with p labelled points and k lines
which contain a particular Cayley tree is just the number of ways
(k - p + I) lines can be distributed among the (1/2)(p - l)(p - 2)
pairs of points in the Cayley tree which have no line. Therefore:
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=i (P: -10 2))(c,• , k - p +!

and since there are p" -2 Cayley trees with p points, Eq. (49) follows.

13. For tables see the article referred to in Note 6. Note, that one
can formulate the problem of finding the distribution function n(p, k, d)
also in the following way. Find the distribution of the first principal
minor of random, symmetric p by p matrices in which with equal a
priori probability k of the p(p - 1)/2 off-diagonal elements, say on
the right of the main diagonal, are set equal to minus one and the rest
equal to zero. The matrix is then completed by taking each diagonal
element equal to the sum of the elements on the corresponding row
(or column) with the opposite sign.



CHAPTER III

Remarks on the Condensation Problem

1. latrodutiom. Although the phenomena of condensation and other
phase transitions (like melting) are so very familiar, they are, when
one tries to think about them, rather mysterious. How do the
molecules of the vapour "know" that at a definite specific volume

P

?-.--Super -saturated
% state

sstate
I I

V2  V1  V

Figure I

they should condense and form two phases? And why is the transi-
tion so sharp? Clearly there are two arrangements of the molecules
with "probabilities" depending on v which switch over at the critical
value vj. This is confirmed by the phenomena of supersaturation and
supercooling, represented by extensions of the vapour and liquid parts
of the isotherm and in which the vapour and liquid are in metastable
states (see Fig. I). For van der Waals these phenomena are of course
no mystery and in fact seem to confirm his views. However, once
one gives up the van der Waals equation this picture makes one doubt
whether the condensation phenomenon can come out from the basic
equation:

61
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(I) e-.," = Z = I . dr, ... dr,, exp[-0Fi)

where P = l/kT.
At one time people thought that perhaps the stable isotherm could

not be derived from (I) without further assumptions. Perhaps one
should make a separate calculation of YJ for two different arrange-
ments of the molecules, one corresponding to a homogeneous phase
and one corresponding to the two phase system. For each volume
one would then obtain two values of W and the real isotherm would
be determined by the lowest value of V. Although such calculations
for phase transitions between different solid phases have given good
results, it is I think now the accepted opinion that they are in principle
not correct. The integral (I) should always give the most probable
state of the system, which is the state of stable equilibrium. The
stable isotherm should therefore follow automatically from (I) without
further assumptions.

However, from the mathematical standpoint it is hard to imagine
how the harmless Eq. (I) could lead to a T (and therefore to a p)
with such sharp discontinuities. The answer to this lies in the fact
that one is interested in a limit property of W. The problem has a
physical sense only when the system is very large. One is therefore
led to the investigation of the limit N -- a, V --* a, v = V/N finite.
One can then prove that the limit:

(2) Or, T) = Lim - l(N', T, N)
N-.~ N

always exists. It is for this function O4v, T) that one should expect
the sharp discontinuities, and although perhaps still surprising (and
certainly not proved) it is clearly mathematically conceivable.

Finally, how about the supersaturation phenomenon? If (i) gives
the stable isotherm, then it can not explain supersaturation. To
explain this strictly from the partition function one must think of
situations in which the supersaturated vapour is in an equilibrium
state. This is the case in capillary vessels, and for the strict explana-
tion of supersaturation a detailed study of the effect of the shape of
the vessel would therefore be necessary. It has never been really
attempted.

2. The Van Hove theorem.' I said already that one can show that
the limit (2) exists. This was proved rigorously first by L. Van Hove
who could in addition show that p = - i¢/b' is a monotonic decreas-
ing function (or better a never increasing function) of v. This con-



SHP *VA O ;OVE THEOREM 63

firms therefore that one never can jt % van der Waals like isotherm
from (1), but of course it does not show that there must be a hori-
zontal portion in the isotherm.

A simplified proof of these results which probably can be made rigor-
ous goes as follows.

5 ,ro!

Figure 2

Assume that 0(r) has a hard core ro, and that for r > ro the force is
attractive, range ri and with a lower bound for the potential equal to
-,. (see Fig. 2). I am sure that these special assumptions can be
relaxed, but let me stick to them. Now divide the (cubical) volume
V = -L in cubical cells each of volume y = d' where L > d >r1 .
The idea of the proof consists of comparing the integral (I) with the
value it would have if we eliminate all the interactions between the
particles in different cells. Write in this case for the integral

(3) 2 = fv'"fdr.. "drNe-" = exp[-#P(V, T, N)].

'5 is the new total potential energy, and call 0 = 4, #(rj) the
original potential energy. Since with our assumptions the interaction
between cells is attractive 40 > 0. On the other hand since each cell
is surrounded by a layer of volume 6d2r, in which there can be external
molecules with which it can interact, and since in this layer there can
be at most d2r,/r• molecules (omitting all numerical factors), and
since each of these molecules can interact at most with r'frg other
molecules, one must have (since there are V/d 3 cells):
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d 2r1 rl V

ro3 r~od3

Hence one can conclude:
e- _<- e-10 < exp[-# + p#V/dJ

with p = r4/04. The integration over r.. r,, does not change the
direction of the inequalities and by calculating the free energies W
and W one obtains:

(4) q % fj + f P
N =N =N d

where v = V/N. Since increasing N, keeping v fixed, one still can

let d -, o say as N" ', one sees that WIN and WIN will approach to
the same limit if such a limit exists. Now

I S , !n!N!" f r
!3 F • .. ,. dr,. •dr., exp[ - #0 r,... r.)]

(5) N ,, ln !. .n!Y

- S exp[-f 2 n.0.,(,. y))
(Ini) t: 1

where the sum is over all numbers n, of particles in the ith cell, with
the condition (indicated by the prime):

n, = N,

and where we have put:

(6) e8 #",*(fv) = ' f .f dr1 .. dr,, exp[- #0(r, )

Many of the numbers n, may still be equal to each other. Let ak be
the number of cells in which the number of molecules is k, then
(7) 2-= Sxp[e-p9-1 kakO(k, y)]

(all) k

where the double prime indicates the conditions:

(8) =ak ka = N.
k k

Calling:

ok s e-ok*(kie)

one sees that (7) is of the multinomial form and one knows that for Y
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and N large it is closely approximated by the maximum term in the
sum, for which:

(9) ak - Agkzk

where A and z must be determined from (8). In fact:

(10) In2! -NInz +- vin(z)

with:
a(z) - , >gz.

k

From (8) and (9):
do

v = Ao(z), N = Az
dz

so that since v = V/d 3 = Nr/d3, one has:

(II) d1 a

For fixed d, z depends therefore only on r and from (9) it then follows
(always for fixed d) that:

(12) In2, - In: + -lna(z) = r).

Together with the inequality (4), this shows that the limit (2) exists.
Furthermore from the inequality (4) it follows that also p = - 0&v
and f = iý,/0, differ at most by a constant quantity proportional to
I/d, and which can therefore be made as small as one wishes. So
it is sufficient to look at P. From (12) follows:

I In a(z),

(13)
= I d In a(z) dz

For #d 3  dz dv

and from (II) one gets:

dA d" [32 do\ 2 
-2 d )d

d: zdu/dZ)2 [Z (a) d_ (xZ()]

(14) z3(do/IdZ)2 [R kg?)-( gkzj k~gz)

d3 -.dz (k- j) 2ggzk + I < 0.2z3(do/dz)2k1
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Since all g, > 0, one sees from (I 3 that the sign of ap/8v is determined
by dz/dv, and from (14) one can then conclude that O.f/8v and therefore
Op/8v < 0, which is the content of the second part of the Van Hove
theorem.2

3. The ideas of Yang and Lee. In a very interesting paper3 Yang and
Lee have shown a way how the condensation phenomenon could
follow mathematically from the basic equation (1) in the limit
N, V - o, I, = V/N fixed. Their starting point is the grand canonical
partition function:

Zgr(V, T,:) = • (A3z)NZ(V, T, N)
N-O

for which we derived in Chapter lf the expression:

(15) Zgr(V, 7", T) = exp{ Vx(V, T. z)}

which is valid for any finite V. With the assumption of a hard core,
radius r., we already noted that Z, must be a polynomial of degree
M 2 V/rgo. Let the zeros of this polynomial be z, then (dropping
from now on the T, which remains constant anyway):

(16) Z.,(V, Z) = f -)

and

(17) x(V.: =j-Zll -I•

1=1 Zj

One can therefore interpret x( V, :) as the complex logarithmic potential
of M point charges of strength I/V situated at the points z. Note
that since the coefficients of the polynomial Zg.( V,z) are positive,
none of the zeros :, can be on the positive real axis, so that x(V, z),
for fixed V, will be an analytic function of z along the positive real
axis.

Let us now look at the limit V - . For increasing V the strength
of the charges become smaller and smaller, while the number M
increases. Suppose now that in the limit V- oo a number of the
point charges concentrate themselves in a single layer AB which crosses
the positive real axis. Of course in addition there may be other layers
like CD and finite poles P1. P2,.. (see Fig. 3). The function:

(18) g(z) = Limx(V, :)
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Figure 3

will in this case be completely defined along the positive real axis, but
it will consist of two analytic pieces, one inside the arc AB of zero's
and one outside. From the theory of single charge layers one knows
that at the crossing point :, these two pieces will be continuous but
the first derivative will have a discontinuity.

Clearly for any finite but large V, the argument given in Chapter I1
to obtain from (15) the free energy and hence the pressure is still valid,
so that the isotherm is determined by the generalized Mayer equations:

I = zo

(19)
P- = V~Z0)

involving now the limit function Z(Z). Because of the discontinuity
in the first derivative of g along the positive real axis, the functions
z dgl/d: and g(:) will look about as shown in Figs. 4 and 5. The
isotherm which follows by eliminating the saddle point will therefore
have the desired form (Fig. 6). Let me conclude with the following
remarks:

(a) The curves : dg/dz and j(:) are the limit curves of a series of
functions : Ox(V, z)/?: and x( V, :) which are analytic along the real
axis. How one of these functions might approximate the limit curve
is indicated by the dotted lines. It shows again that the condensation
phenomenon is a limit property.

(b) Of course these considerations of Yang and Lee are not a
complete theory of the condensation phenomenon. They show only



68 REMARKS ON THE CONDENSATION PROBLEM,
dz

Vt-- SP----

Z C Z ZC

Figure 4 Figure 5

P

V2  V1  V

Figure 6

a possible (and I think very likely) mathematical "mechanism", and
they show how subtle and difficult the real theory will be.

(c) If the Yang-Lee picture is correct then the Mayer limit function
R(z) discussed in Chapter ii will have a non-zero radius of convergence
and it will be identical to the inner part of g(z) for a region around the
origin. But this R(z) or even its analytic continuation will not deter-
mine the condensation point, since the outer part of g(z) is not deter-
mined by the inner part of g(z).

(d) The role which the hard core assumption for the intermolecular
force plays in the argument may seem quite striking, and one might
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even think that therefore a gas of hard spheres will also show the
condensation phenomenon. This is of course not necessarily so.
The charges may concentrate in single layers, but if for V--> 0 the
charges do not close down on the real axis, that is to say if there is
always a gap, then there will be no condensation since g(z) will then
be analytic along the whole real axis.

4. Some exampll s. 4 To make things more concrete, we consider
here a few artificial examples constructed to illustrate the analytic
features of the theory. Unfortunately, no one has ever been able to
compute the partition function for a realistic model of a gas, so our
examples must be quite ad hoc.

Suppose that the grand canonical ensemble partition function has
the form:

(20) Zgr(V, Z) = (0 + z)v I -

where we take Vto be an integer. Here Vis, say, the volume measured
in units ro4 and is analogous to the M in Eq. (16). The canonical
ensemble partition function corresponding to (20) is obtained by
expanding in powers of : and identifying A( V, N) as the coefficient of
:N. We find:

(21) Z(VN)= N.(N -No)
0:E(NO -0 N)

This model has been constructed so that it has the general features
which the partition function of a real gas must have, i.e. the function
Zr( V, z) is a polynomial of degree 2 V with positive coefficients and
the coefficients are monotonically increasing functions of V for fixed
N. In our example (20) the 2 V zeros of Zr are all on the unit circle,
half of them at z = - 1, the other half at the Vth roots of unity other
than z = - I. There are no real positive zeros. It is now easy to
show that for this model the limit function g(z) is given by:

(22) In ( + z), forz< 1,
In (I + z) + Inz, forz > 1.

This is just the logarithmic potential due to one unit of charge at
z = - I and one unit of charge distributed in a uniform single layer
on the unit circle. The function R(z) is continuous along the positive
real axis but its derivative has a discontinuity at z = I. Note that
g(z) outside the unit circle is not the analytic continuation of g(z)
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inside the circle. Also note that the function g(z) introduced in §6,
Ch. 11 is just:

(23) g(z) = In (I + z).

This function has no singularities along the positive real axis, indeed
its only singularities are logarithmic branchpoints at z = -1 and
Z= 0-.

The equation of state corresponding to (22) is readily obtained
using the Mayer equations (19). We find

I v I I I
n 1 _ ! = +T - 5 +- + ., v> 2,

(24) kTP = iIn 2 ,2 > v > ,

{n( 2v 1)2 ' T

This is the typical form of the isotherm for a condensing gas. Note
that the virial expansion of the equation of state is convergent for
v > I while the gas condenses at tv = 2. Hence, an important thing
we learn from this model is that we cannot in general determine the
point of condensation or the properties of the condensed phase from
a study of the equation of state in the gas phase alone, i.e. from the
virial series.

Note that one can obtain the equation of state also directl/ by
computing the limit:

I r) = Lim I/InZ(Nt,, N)

using (21) for Z(V, N). One does not need to introduce the grand
canonical partition function, although of course it is quite a good
trick!

It may still be of interest to consider a wider class of models, namely
those in which the zeros of Z,, all lie on the unit circle. If we intro-
duce g(g) such that Vg(O) dO is the number of zeros of Zgr which lie
between 0 and 0 + dO on the unit circle, then the limit function &(:)
will be the logarithmic potential due to a charge distribution with
density g(#) on the unit circle, so that:

(25) *lz) = dOg(O) In (I - ze'°).

Since Zgr is a real function its zeros must be distributed symmetrically
with respect to the real axis, i.e.
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(26) g(a) - A 0),

We can find further properties of g(O) by expanding both sides of (25)
in powers of z for Izl < I. Since for jzj < 1:

(27) V(z) =(z) ()= ,
l- I

one finds:

(28) b -= f A d g(O) cosIO.

Thus, the b,'s are directly related to the coefficients in the Fourier
cosine series expansion of g(0). Hence we can write:

I I W b o 0

(29) g(O) = y -- :E .

Here,

(30) go = 0 " dO g(O)

is the total charge in the distribution. From (29) we see explicitly
that g(0) cannot be completely determined from a knowledge of the
b,'s, i.e. from g(z); there is still the undetermined constant go. From
(25) one can readily show that in general:

(31) X(z) = X() + go In z.(31))

Hence, we can write

W(), Iz < I,
(32) R(z)= + golnz, jzj > !.

Here we see explicitly that g in the outer region cannot in general be
determined from g in the inner region.



NOTES ON CHAPTER III

1. L. Van Hove, Physica 15 (1949) 95 1. We follow the presentation
given by R. J. Riddell in his dissertation (Contributions to the Theory
of Condensation, University of Michigan, 1951).

2. This proof should be compared with the proof given by C. N.
Yang and T. D. Lee, Phys. Rev. 87 (1952) 404, Appendix I. With
the same assumptions for the intermolecular potential and using
essentially the same method as Van Hove, Yang and Lee prove that
the limit:

(a) g(T, :) = Lim- In Zg(V, T, z)
V-M

exists. In addition they prove that both g(:) and z 0/z for positive
real z are monotonically increasing with increasing z and that Xz)
must be continuous.

Since the grand partition function Z.r is a polynomial with positive
coefficients from which for large N the partition function Z(Nv, T, N)
follows by the steepest descent method (see Chapter 1i, §7) it is clear
that from the existence of the limit (a) and from the properties of g
and z ilgliz both parts of the Van Hove theorem follow. The question
arises whether the inverse of this statement is also true. Can one
deduce from the Van Hove theorem the existence of the limit (a) and
the properties of 9(z). This is of course very likely but a formal
proof (which we owe to M. Kac) is perhaps not superfluous.

Let us assume that with increasing volume the vessel always keeps
the same shape. One then can introduce a Laplace transform of
Zur by:

fbfdVe-'vZr(V",Tz)= I ZN f dVe- vZ(V, T, N)
(b) f N-0O

= + NzN dv e N-I'Z(N,, N)

putting V = Ni, and omitting from now on the variable T. Since for
fixed N, Z(Nv, N) - v for large v, (ideal gas limit) the integral in (b)
for s > 0 always converges, and one can conclude that the abscissa of
convergence of the Laplace integral is determined by the convergence

72
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of the series over N. According to the first part of the Van Hove
theorem Z(Nv, N) ! exp( - Npov)) if N is large. Using the method
of steepest descent the integral in (b) can therefore for large N be
approximated by:

(c) dve_ ,.+o#(,ll 12f e- N- vo +(200))1= \No"(Vo)!

where the saddle point vo is determined by

(d) s + , =)=0.
"bV0

Here we also have used the fact that for v > 0 00l/v < 0 and " -
0

2,/Ov 2 > 0 which follows from the second part of the Van Hove
theorem and from the fact that the pressure p = -00/fv is always
positive, since it is positive in the ideal gas limit.

From (b) and (c) one concludes that the abscissa of convergence
of the Laplace integral is that positive value of s - for which:

(e) ze - 1;,'o + 5*(V")) = I

where vo is determined from (d) which we now write as:

(f) 9= -9ePI)

h.'0

Eqs. (e) and (f) are two simultaneous equations from which g and v0
are to be determined as functions of z. We shall show from the
Van Hove theorem that there is always an unique solution for g, which
implies that for large V:

Zr( V, z) z ev;(Z)

so that the Yang-Lee limit (a) exists. The properties of X(z) also
follow from (e) and (f). To see all this, write Eq. (e) in the form:

(g) 00vo) - 1 o = I In) z

using (f). This is now an equation for vo as function of z, and then (f)
determines g. Eq. (g) can most easily be discussed graphically.
Suppose first that no condensation occurs. Then according to Van
Hove 4#(v) is a monotonic decreasing and upward concave function
of v. For any value of z, v. is then uniquely determined by drawing
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the tangent from the point (In z)/l on the 0-axis (see Fig. a) and the
slope of the tangent determines g according to (f).

Next suppose that there is a condensation region, which of course
the Van Hove theorem does not exclude. Then the 0(v) curve will
have a straight part with a slope corresponding to the saturated
vapour pressure (see Fig. b). Clearly in this case the tangent con-
struction gives for z < z, a value for vo > V., for z > z, a value for
Vo < V,, while for z= z, v0 is not uniquely determined. However,

Wi)v)

SInZ

Figure a

the slope of the tangent and therefore g is for any z uniquely fixed,
and one easily sees that R is a continuous and monotonically increasing
function of z. Finally, since by differentiation after z, one deduces
from (f) and (g) that:

Z'0

and since vo is a monotonically decreasing function of z which has a
discontinuity in the case condensation occurs, it is clear that *(z) has
all the Yang-Lee properties.

It should be emphasized that in this equivalence proof both parts
of the Van Hove theorem have been used. The existence of the limit:
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I
(i) -P•v) = Lim In Z(Nv, N)

is not enough. For instance for the van der Waals' expression for Z:

(j) Z = . (V - Nb)1 exp N(N - 1)

1# (v)

-In z

In z-

v V V2  Vo V

Figure b

the limit (i) exists, but

)b# kT a(k) p at!r. .b t,

is not monotonic. Constructing from (j) the grand canonical partition
function, it is then not difficult to show that this leads to the van der
Waals equation (k) plus the Maxwell rule in the condensation region.

3. C. N. Yang and T. D. Lee, Statistical Theory of Equations of
State and Phase Transitions. I. Theory of Condensation; Phys. Rev.
87 (1952) 404. In the following paper: Lattice Gas and Ising Model,
Phys. Rev. 87 (1952) 410 the same authors apply their general theory
to a so-called lattice gas, in which one assumes that the molecules
of the gas are restrained to lie on the lattice points of a cubical lattice.
Each lattice point is either vacant or occupied but no two molecules
can be on the same site. Assuming in addition that only nearest
neighbours attract each other, the authors show that the zeros of the
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grand partition function all lie on a circle, and that in two dimensions
condensation occurs.

4. The first example (Eq. (20)) is due to G. W. Ford. Lee and
Yang (l.c. Note 3, p. 415) introduced the density distribution g(e)
of the zeros on the unit circle which leads to Eq. (25) and also Eq. (28)
for the b, is due to them.



CHAPTER IV

The Boltzmann Equation

I. Iutroductloa. We now will begin with the discussion of the non-
equilibrium properties of gases, that is we return to the basic problem
of Boltzmann: why and how is the equilibrium state reached in time.
Following the historical development, I will start with the theory of
dilute gases according to the so-called kinetic method of Boltzmann,
and will discuss later how this may fit into the general Boltzmann-
Gibbs picture of the approach to equilibrium which was sketched in
the first chapter.

The basic equation of the kinetic method is the famous Boltzmann
equation:I

(I) f= -v. -. 1+ dv I. dQ gi(g, OXf'f - ffl)

which expresses how the number of molecules

f(r, v, t) dr dv

in the element dr dv of the six dimensional phase space (p-space) of a
molecule changes in time due to the streaming in is-space and due to
the collisions with other molecules. In (I) a is the acceleration due
to an outside potential U(r) and the streaming part of (I):

(2) S(f) .if - a.e I

is clearly just the local change of f per second due to the independent
motion of the molecules in IA-space. One can also say, that S(J) is
the one particle Liouville operation {H, f} with H = (p2/2m) + U(r).
The last term in (I) describes the effect of the collisions; here the prime
and the index I of thef's refer to the velocity variable only, so that for
instanceA =- f(r, vi, t) and the four velocity variables refer to the
velocities of the binary collision (v, v1) 4± (v', v'1); g = 1v - v1J =
Iv, - v'i is the relative velocity which in a collision turns over the
angle 0. To find the number per c.c. and per second of the direct

77
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collisions (v, vi) - (v', vi), Boltzmann argues as follows (see Fig. I).
Consider the relative motion and surround all molecules with velocity
v with an action sphere with a radius equal to the range of the forces.
All molecules with velocity between v1 and v, + dv1 , which enter the
action sphere with a collision parameter between p and p + dp and
which lie in the little cylinder gp dp dE di (E is a polar angle) will in the

9._l. Direct _Action

Figure I

next time element di collide with a molecule of velocity v and in this
collision g will turn over an angle 0. The relation between p, g and 9
is determined by the dynamics of the collision; in fact:

(3) 0e= - 2f 0 1 1° :g

where 'co is the smallest root of the expression under the radical sign.
Now, since there are f dv molecules with velocity v per c.c., and since
each molecule with this velocity carries a collision cylinder, Boltzmann
puts for the number of direct collisions per c.;:. and per second:

dA = gp dp7d -ff fdv dv 1

(4)
- gI(g,0 ) d2ff1-v dv2
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where we have written:

pdpdr = I(g,9)dS?.

i(g, 0) is called the differential collision cross-section for a collision
into the solid angle dD = sin 0 dO de. Clearly I(g, 0) through (3) is
uniquely determined by the force law 0(r).

Similarly Boltzmann puts for the number of restituting collisions
(v', V'*) -, (V1, v2) per c.c. and per second:

(5) dB = gl(g, 9) d.Of'fi dv' dvi.

Since the transformation from v, v, to v', v; as determined by the
conservation laws of energy and momentum, is clearly a linear ortho-
gonal transformation, dv dv = dv'dvi, and from (4) and (5) one
obtains therefore the collision term in the Boltzmann equation (i)
since each direct collision is a loss and each restituting collision a gain
in the number of molecules f dv under consideration.

Eqs. (4) and (5) express the so-called Stosszahl-Ansatz, which may
seem intuitively quite evident, but which is of course an assumption
of a non-mechanical nature. I will postpone the critical discussion
of this assumption to Chapter VII. For the time being let us accept
that the Boltzmann equation describes how the distribution function
f(r, v, t) of the molecules in 1L-space changes in time.

2. The approach to equilibrium. Since (I) is of the first order in the
time, a basic problem is the initial value problem: given the distribu-
tion function f(r, v, 0) at t = 0, find the distribution at any later time.
It was a great triumph for Boltzmann that he was able to show that
any initial distribution approaches in the course of time the Maxwell-
Boltzmann distribution: V 2 ]
(6) f0 = A0 exp I-P {-' + U(r)

for sufficiently general outside potentials U(r). In here A0 and P are
constants which are determined by the given total number and total
energy of the molecules.

Since Boltzmann's arguments are so well known, I will only sketch
his proof.

The first step is the famous H-theorem. Let

(7) H(t)= ffflogfdr dv;
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then:
"•dH f l ogfdr dv =d(H' -- +

7 jiO 8t dt ) sreaming + dt1i 'dlsions

using (I) for Of/Ot. Due to the streaming the H function does not
change. This follows from the Liouville theorem. As mentioned
already in Chapter I, §2, the integral over the whole phase space of
any function F(p) of the density of the ensemble fluid will be indepen-
dent of the time. Since with independent molecules the gas is an
ensemble of which the density is f, one can conclude that the integral
of flog f over the phase space ( = j-space) will not change with time
because of the streaming. Due to the collisions H always decreases
since by a few simple and classical transformations one can write:2

H = !fdvfdv, f dQgf(ge)(f~fi' -ffi)In . <0

dH/dt is zero only if for all possible collisions

(8) A = f I

and this state will be reached monotonically in time. Eq. (8) deter-
mines the dependence of the equilibrium distribution on the velocities.
In fact the only solution of the functional equation (8) is:

(9) f Aexp{ -P!( - u))}

where A, P and the average velocity u can still be functions of r and t.
From the Boltzmann equation follows that an f of the form (9) must
still fulfill the equation:

(10) If+ V .I 1= 0

and one can show that for a sufficiently general outside potential
U(r) (which include the shape of the vessel or of the wall potential),
the only solution of (10) which is of the form (9) is found by putting
in (9) u = 0, P equal to a constant independent of r and t, and:

(11) A = Aoe-iv(r)

where A0 is a constant.
The proof is given in Note 3. Let me only say that for special

outside potentials for instance a harmonic potential U(r) = Wr2/2, the
spatial equilibrium distribution (11) will not be reached in time. For
such special potentials there are a host of special solutions of the
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Boltzmann equation, in which the dependence on the velocity always
has the form (9) but where the A, P and u can be functions of space
and time. Boltzmann himself gave a detailed discussion of these
solutions (see Boltzmann, Wissenschaftliche Abhandlungen, Vol. II,
p. 83). They have however only a limited interest.

Let me conclude with a number of remarks.
(a) Clearly Boltzmann does not actually solve the initial value

problem stated in the beginning of this section. In fact he supposes
in the first place that the initial value problem has an unique solution
and then that if at t = 0 the distribution function f goes to zero for
r, v -, oo sufficiently fast for the convergence of all the required
integrals (especially for the total number, for the total energy and for
H), then also for any later time these integrals remain convergent.
From the mathematical point of view the proof of Boltzmann is there-
'ore not irreproachable. For the spatially uniform case (U- 0;

f only function of v and t) and for elastic spheres (l(g, 0) = constant)
Carleman has given a rigorous proof.' I will not try to indicate the
method Carleman uses, since it does not add to the physical insight.
I do think though that an extension of Carleman's work especially to
the spatially non-uniform case would be quite valuable.

(b) The proof of Boltzmann does not mean, that the approach to
equilibrium happens in two sharply separated successive stages: first
the approach in velocity space to the Maxwell distribution (9) and then
the approach in coordinate space to the "barometric" distribution (II).
Both approaches are coupled to each other and the velocity distribu-
tion will be strictly Maxwellian only if the complete equilibrium is
reached.

(c) However it is true that the approach to equilibrium in velocity
space is quite different from the approach to equilibrium in coordinate
space. It is physically plausible and it is also suggested by Boltz-
mann's proof, that the velocity distribution in any volume element of
space will approach a local Maxwell distribution of the form (9) very
quickly and in a monotonic fashion. It will never reach it because
the streaming and the outside forces will interfere, but it will have this
tendency. On the other hand the approach to equilibrium in co-
ordinate space is not monotonic in general and will require a much
longer time. Of course this picture of the approach to the complete
Maxwell-Boltzmann distribution (6) must and can be confirmed by a
deeper study of the Boltzmann equation. It is the basis of a successive
approximation method (the Chapman-Enskog development) which
we will discuss in Chapter VI.
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3. The Ilme'aized Doltznmnn equation. Accepting the fact that the
Maxwell-Boltzmann distribution (6) will be reached in time it is clearly
of interest to investigate the case of a small disturbance of the equili-
brium state. Put in (I):
(12) .[ = fo[Il + h(r, v, t)]

and neglect the quadratic terms in h. One then gets the linearized
Boltzmann equation:

ag•• -. h a .h iih [ "
d = - h + dr,. dgl(g, O)fo,(h' + h, - h - hi)

(13)
= S(h) + C(h).

Consider first the spatial uniform case, in which there are no external
forces, so that the disturbance h depends only on v and t, and

(14) [o = n e

where the number density n and the temperature T are constants.
To solve the initial value problem, it is clearly of interest to find the
eigenfunctions 0, and eigenvalues A, of the collision operator C,
defined by

(15) C(00) = A.01.

Some properties are quite obvious.
(a) There are five zero eigenvalues corresponding to the eigen-

functions 1, v, ,
2 ; this is a consequence of the five conservation laws

during a collision.
(b) All other eigenvalues must be negative.
PROOF.

f dvfo0 ,C(0€)

f d~
and:

fdvifo•0 ,C•) = - dv f dv. f dQ gl(g, O)fofo( 1(0 + #;i - -- _,1)2

using the same transformations as used in the proof of the H-theorem.
(c) Different eigenfunctions are orthogonal to each other. This

follows from:

f dvfo3•'C(/,1 ) = f dvfo0C(,).
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(d) The operator C is an isotropic operator in velocity space and

therefore the eigenfunctions will have the form:

(16) 1,,. = R,,O,) 4,. 0)
using polar coordinates in velocity space, and the eigenvalues A,, will
at least be (21 + I)-fold degenerate.

Assuming that the 0, form a complete set, one can clearly solve the
initial value problem in the spatially uniform case by developing
h(v, t) in the #. and one gets:

(17) h(v, t) = >_ cieAit(v)

where the c, are determined from h(v, 0). Since Ai < 0, (17) shows
that h goes to zero except for the permanent changes in density,
average velocity and temperature. The quantities I /Aj clearly repre-
sent a spectrum of relaxation times.

The question remains, whether such a discrete spectrum of relaxation
times really exists. So far as I know this has not been proved in
general. One does knows that the collision operator C(h) is of the
form:

(18) C(h) = -a(r)h + fdvlfo0K(v, vl)h(vl)

but the kernel K(v, v,) is singular, so that the usual theory is not
applicable. It is still simple to see that whatever the spectrum is, it
is bounded from below, if:

fdvfa(v) = f dv f dv1 fofo, f dDgl(gO)

exists, which implies that the total cross section:

(19) Q(g) = f dQ (g,e0)

must befinite, which again follows from the physically natural assump-
tion that the forces have a finite range. I believe that, in this case,
the spectrum will be discrete and that the A, will approach a finite
negative limit point. But even for hard spheres (I(g, 8) = const.)
this has not been proved.'

Because of these uncertainties, it is reassuring that for one special
case the spectrum and the eigenfunctions can be determined explicitly.
Since for this case we will discuss in the next chapter a special applica-
tion of the linearized Boltzmann equation, I will collect here the
precise formula.
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Going back to (13), introduce dimensionless velocity variables by
putting:

S= 2Tm ) 112

and similarly for vj. Put also:

then with a = 0 (no outside fields), so that fo is still given by (14),
the linearized Boltzmann equation becomes:

dh dh
(20) L- + c .. = noJ(h)

with:

(21) J(h) = dc, exp(-c') dDQF(g,8)[h' + h- h - hi,
V 3j\2 f fO

(22) F(g, 8) = 1/)-2 g

a is a constant of the order of the total cross section, which is intro-
duced to make F(g, 9) dimensionless. I will call J(h) the dimension-
less collision operator. It still has of course the same properties
as C(h).

Now assume that F(g, 0) is a function of 0 alone. Since the relation
between the velocities c', c€ after collision and the velocities c, cl
before collision is a linear relation, it is clear that in this case if h is a
polynomial of degree n in v also J(h) will be a polynomial of degree
n in v. The eigenfunctions of J will therefore be polynomia, and in
fact one can verify that the eigenfunctions, written again in polar
coordinates in velocity space, are:

(23) 011. = Nv.S•? 112(c
2)c' Y1.(0, 40)

where the~o+ 1S 2 are the associated Laguerre polynomia (also called
Sonine polynomia). Sim'(x) is defined as the coefficient of t'" in

(I - t l- -•ex I .p .I --

and their explicit expression is:

= -x (n + m)!
S( ( )p!(m - p)!(n + p)!
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In (23) the NI, are normalization constants. The #,1,(e) form a
complete orthogonal set of eigenfunctions with weight function e-e',
and the corresponding eigenvalues are:

( ,, = 21, 2f dO sin OF(O)[cos21 ! P,(cos.)
(24) f c 2 2

+ sin2'IPg(sif I - -8, 8,

Eqs. (23) and (24) were found first by C. S. Wang Chang and then also
independently by L. Waldmann.' Note that the five zero eigenvalues
are Aoo, A•o and Ajo corresponding to the eigenfunctions I, c and
(3/2 - c2). One further sees from (24) that the A,, converge for large
r and I to:

(25) - 2,r fo dO sin OF(O)

which we can assume to be equal to - I by the proper choice of a.
I will call this special case of the linearized Boltzmann equation the

quasi-Maxwell model. It is not a realistic model, in the sense that
there is no intermolecular potential for which F(g, 0) depends only on
0 and for which the integral (25) converges. When the force is equal
to Kr- (Maxwell model),

gl(g, 9) = W FM()

but for small 0, F,,(O) - 0'2 so that (25) diverges, corresponding
to the fact that Or) has an infinite range. I However, it seems to me
that the quasi-Maxwell model must be quite similar to the actual case
of forces with finite range, and will give therefore at least a qualitative
insight.

Finally let me point out, that in (19) the order of magnitude of the
eigenvalues of the collision operator noJ(h) is clearly no, which
corresponds to the order of magnitude no(kTIm)" 12 for the eigenvalues
A, of C(h). Thus (A,) - ' is of the order of the time between collisions
which confirms the view that the Maxwell distribution will be reached
after a few collisions, that is in a time of the order of the time between
collisions.



NOTES ON CHAPTER IV

I. For the complete discussion Boltzmann's book Vorlesungen uiber
Gastheorie (Ambrosius Barth, Leipzig, 1912) is still indispensable.
See esp. Vol. 1, Part II, and Vol. 2, Part Vii.

2. One has:

(7t = f d f dvi f d.gI(g, 0) Inf.(f'f1 ' - ifs)

= f dv fd, f digl(g, O)Inf,(f'f; -iff),

by interchanging v and vi. Therefore, adding the two expressions and
dividing by two:

= I f dv f dv fdQ gl(g ff' - ff,)lIn (ff")

= 'f dv f dv, f dQ gl(g, O(ff. - f'fl') In (f fr),

by interchanging the velocities before and after collision and using
again dv dv, = dv dv. Adding the two expressions and dividing by
two leads to the form given in the text.

3. Write Eq. (9) in the form:

InJ= -hr 2 + kyv + n

so that h = #m/2, k = nif•u and n = In A - Pmu'/2. Substituting in
(10) and requiring that (10) must be fulfilled identically in v leads to
the equations:

(a) 0, =0,

(b) Lk-+ kj - 2 M 8 = 0,

4~k i~n
(c) '-! + - - hai = 0,

{d) can
(d) T+ k+aa = 0.

86
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From (a) and (b) one concludes that h can only be a function of the
time and that

dh
(e) k = ko(t) + [120) x r] + h r.

At this stage one can say therefore that the average motion of the gas
can only be a possibly time dependent combination of a translation,
rotation and a radial expansion or contraction. Since ma--
-grad U(r), it follows from (c) that:

()k grad n + U •

Therefore the curl of 1k/0t must be zero, which implies that 12 must
be a constant and then it follows from (e) and (f) that:

2idko Ild2h
n h +ýU = no(t) -do- r - f-h r2.

m d - 2dt2

Substituting this expression for n in the last equation, (d), which has
to be fulfilled, leads to:
(g) k.grad U + h no -d2ko-- I dr3h 2 .

m mdt' dt dt2 2 dt3

Now suppose that from an arbitrary origin the outside potential U(r)
can be developed in a power series:

(h) U = A.x + A• Axx + X AayxaxOxY

where the A's are known constants. Higher order terms will be
neglected since it will turn out that with arbitrary A's the form (h) has
already sufficient generality. Introducing (h) in (g), it is clear that
only the left hand side will contain terms of the third degree in the x,.
Equating the coefficients of these terms to zero gives ten homogeneous
linear equations in the four unknowns dh/dt and 2l. Thus one finds
that in general h must be constant and $2 = 0. From the terms of
the second degree in the x,, one then can conclude that llso ko = 0,
so that k is zero all together. From (d) follows, that then n must be
independent of the time, and from (c) one concludes that n + 2hU/m =

no which is equivalent to Eq. (II) in the text.

4. T. Carleman, Probikmes Mathematiques dans ia Thiorie Cindtique
des Gaz (Publications Scientifiques de l'lnstitut Mittag-Leffler, Vol. 2,
Uppsala, 1957). The generalization of the proof for other force laws
with a finite range is straightforward.
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5. This was first shown by D. Enskog, Kinetische Theorie der
Vorgange in Massig Verdfinnten Gasen, Dissertation, Uppsala, 1917,
p. 140. For a more transparent proof see L. Waldmann, Handbuch
der Physik 12, p. 366.

6. There is also the following troublesome question. Should one
impose the condition that the integral:

(i) f dVfo

exists in order to select the eigenvalues and eigenfunctions of the linear
collision operator C(o)? On the one hand this is necessary if one
wants to apply the usual Hilbert space theory. But on the other hand
the integral (i) has no physical meaning in contrast to the case of
the quantum mechanical operators. This difficulty was noticed by
N. G. van Kampen (Physica 21 (1955) 949; see especially the remarks
on p. 957). L. Waldmann (Handbuch der Physik 12, p. 365 and p. 367)
has tried to connect the square integrability condition with the require-
ment that the entropy should always exist. However his argument is
not convincing.

7. C. S. Wang Chang and G. E. Uhlenbeck: On the Propagation of
Sound in Monatomic Gases. Report of the Engineering Research
Institute, University of Michigan, 1952. L. Waldmann, Handbuch der
Physik 12, §38.

8. Explicitly one finds (see Maxwell, Collected Papers, Vol. 11, p. 42):

I (cos 20)1'2
F.(O) = � sin 0 sin 20 {cos2 4K(sin 0) - cos 24)E(sin 0)}

where 4) is related to 0 by:

2 = (cos 20)1' 2K(sin 4).

K(x) and E(x) are the complete elliptic integrals of the first and
second kind respectively. FM(O) is a monotonic decreasing function
of 0; for small 0:

F 3•(O ) 113')2 (Si 35 )
(6 0 1 + 27 ...

while for 0 = 7r:

FM(-) - 4K2(1/4) 0.0727...4 (w4



CHAPTER V

The Propagation of Sound

I. Introduction. As an application of the linearized Boltznann
equation let me consider the propagation of sound in a gas. Clearly,
if the gas is in equilibrium and if the intensity of the sound is not too
high, then the sound waves will be a small disturbance from equili-
brium and should therefore be described by the linearized Boltzmann
equation.

First let me tell you some of the experimental facts.. The first
question is how fast sound propagates, and the answer seems without
mystery and is known to every physics student. He knows that the
velocity Vo depends on the adiabatic compressibility of the gas and
that one gets:

(I) = (-, L112 = (5k k)'12

for a mono-atomic gas, to which I will always restrict myself. How-
ever, if one does not look upon the gas as a macroscopic material with
some compressibility, but as a collection of almost independent
molecules, then it seems to me that the sound propagation becomes
more mysterious. How is it possible to impose on the random motion
of the molecules the ordered motion, or in present day terminology
the collective mode of motion, which a sound wave represents? That
one runs into rather deep questions becomes apparent, when one
wants to find the frequency dependence of V, the dispersion of sound,
and the accompanying absorption of sound. Since the days of
Kirchhoff one knows that for increasing frequency, V becomes larger,
and absorption sets in. The latter can still be partially understood
from the macroscopic point of view. At high frequency the tempera-
ture and velocity gradients between compression and rarefaction
become so steep that although the time between them gets shorter, the
heat conduction and the viscosity of the gas begin to have effect and
cause absorption. Kirchhoff found for the absorption coefficient in
amplitude:

89
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(2) ct (2 0+ m)

where to = angular frequency, p the density, IA the viscosity coefficient
and K the heat conduction coefficient of the gas. Note that since
K - (k/re)J,, u - pAlc> with A the mean free path, ýc> some average
thermal velocity (hence , c> - Vo), (2) shows that a0 - A/A2 if A is
the wave length of the sound. Experimentally (2) has been well
verified, whcn the frequency w is not too high.

What happens if the frequency gets higher and higher? The most
extensive experiments have been done by M. Greenspan for helium
gas.' His method was the usual one, although many precautions and
refinements were necessary of course. A piezoelectrically driven
quartz plate A produced the sound waves and the density fluctuations
were picked up at an identical receiver quartz plate B producing
voltage fluctuations which then could be amplified. The difference in
phase of the fluctuations between A and B determines the phase
velocity and the ratio of the amplitudes gives the absorption coefficient.
The distance L between the plates was always much larger than the
mean free path A. The results seem to indicate that the velocity V
and the absorption coefficient a increase monotonically with frequency.
The highest value of A/A which could be realized was of order one
and the velocity V had then increased to about 3 V0, while the absorp-
tion coefficient had become of order I/A, so that the absorption was
tremendous.

What happens for ,-r. ? Some people have speculated that V
and a might become infinite, since practically infinite velocities occur
according to the Maxwell distribution. Others have thought that V
might become constant again while the a goes through a maximum,
similar to the observed behaviour in poly-atomic gases. But there is
no real reason for either belief.

2. The Wasg-Chang method. Returning now to the theory, to find
the dispersion law of the sound waves it seems natural to seek a solu-
tion of the linearized Boltzmann equation (see Chapter IV, §3):

i•h i'h
-- + c.-- = 11,J(h),

(3)
J(h) = :- 2 f dc, e-1f d F(g, 0)[h' + h' - h - hi]

which has the form of a plane wave, say in the :-direction. Put
therefore:
(4) h = exp[i(kz - wor)]ho(c)
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where o0 = w(m/2kT)1 12 and k = 2w/A is the wavenumber (not to be
confused with the Boltzmann constant k which occurs always in the
combination kT). Now develop ho(c) in the eigenfunctions of J(h):

ho(c) = al a,(c).

One clearly gets an infinite set of linear equations

(5) ik > Mi• a. - iwoal = noA•la

with:

(6) Mi. = f dc c..,•,ec

The equations (5) will have a non-trivial solution only if the infinite
determinant of the coefficients vanishes. This condition:

(7) iikMj,,, - (iUo + nAi)81m11 = 0

gives a relation between wo and k and hence expresses the dispersion
law of the gas. However. the discussion is hard. All that we could
think of was to break off the determinant successively. It is simple
to see that taking only the first three rows and columns, corresponding
to the three zero eigenvalues (for which the eigenfunctions are !,
c. and c2 - 3/2, so that the corresponding elements of M1,, are simple
to evaluate), leads to the cubic equation:

W(W 0 ~k ) = 0

with the three roots ,o0 = 0, too ± k(5/6)1 2 The last two roots
clearly represent "propagating" modes going to the right and left
with the velocity:

_ = O (2kT)12 = (5 kT)l2

so that we have derived Eq. (I). By taking more rows and columns
one gets higher order algebraic equations in a, 0 , and by then following
the propagating modes (that is the roots which for k --) 0, become
± k(5/6) 2 ) one can see what happens for larger k or smaller wave-
lengths. This is straightforward for the quasi-Maxwell model, and
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one obtains series expansions for the velocity V and the absorption
coefficient a of the form:

()V v0 I + a,( r) 2 + a2( '" )4
(8) oVnoO

a - I b[ +b

where the numerical coefficients a, and bi depend successively on the
eigenvalues A, ordered according to their absolute magnitude.

Unfortunately we could not discuss the convergence of this pro-
cedure and so one can not get an answer to the question what happens
at high frequencies for which v/nVo, is of order one. In fact the
coefficients a, and b, increase rather rapidly, so that numerically the
convergence is bad.2

3. The Kac successive approximation idea. What is needed is a more
precise discussion of the experimental situation as sketched in the
beginning of this chapter, and which should clearly be formulated as a

0

A2

- I

Figure I

boundary value problem. However, it is simpler to think of the
initial value problem-given at t = 0 the disturbance h(r, v, 0), find h
at any later time-which also should provide an insight into the
behavior of the collective modes of motion of the gas. For the actual
equation (3) we have not yet succeeded to find the solution, but it is
possible to solve the problem for a simplified version of (3) which is
due to Mark Kac.3

One can always write (suppressing r and t):

J(h) = fdc, L(c, ci)h(c,)
(9)

with: L(c, cl) = ý•A•,(c)0,(c 1 ) exp(-c2).

Think especially of the quasi-Maxwell model for which the spec-
trum is shown again in Fig. I. Put now in (9) as a kind of zeroth
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approximation all At = -1, except the 5 zero eigenvalues. In first
approximation one would then keep the first negative eigenvalue A, and
collapse all others in - I, and so on. At every stage one can solve the
initial value problem and one can also discuss in detail all the normal
modes, because the linearized Boltzmann equation now becomes an
integral equation with a degenerate kernel. In fact using the com-
pleteness relation of the 0,, one gets in zeroth approximation from (3)
and (9):

(10) + nh +c.

= 13 fi I + 2c]c + 2(c2 - 2

and this should also be the zeroth approximation for any molecular
model for which the range of the forces is finite.

To simplify the algebra as much as possible I will discuss instead of
(10), the equation:

(11) - + Yh + c~x = Y dc, exp(-c2/2X)( + ccl)h(cl)
e'x (2w)' f~

which is a kind of one-dimensional version of (10). It is related to a
one-dimensional Boltzmann-like equation, which was also proposed
by M. Kac and it can be obtained by a mutilation of the linearized
form of this equation." The mathematics of (10) and (I1) are quite
similar and also the results are similar, but everything is much simpler
for (II).

Since in (II) the coefficients are independent of x, one can always
make a Fourier transformation in x. Put:

hk(c, 1.) = e" e|"ih(x, C, 7);

then 01I) becomes:
12) L + (Y + ikc)hk = 2 dc, exp( - c2/2)(I + cc,)hk(cl, ).

To solve the initial value problem one can use two methods:
(I) the Laplace transform method in r, which brings in immediately
the initial value of h,, or (2) the method of normal modes, in which the
initial distribution must be developed (provided the normal modes
form a complete set) and from which the further temporal develop-
ment then follows immediately.
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Of course, if you do it right the two methods will always give the
same answer. I will give some details of both methods, mainly
because for the quite analogous problem of plasma oscillations there
has been some confusion in the literature which only recently has been
completely dispelled by K. M. Case (Ann. Phys. 7 (1959) 349). Before
embarking on this, note that from (II) still follows by multiplying
with e- 2/2 and integrating over c:

(13) Lp + 0

with

p(x, 7) = de e- 2 12h(x, c, 7),

(14)

OX(x, 7) = J e dce-c"2 ch(x, C, 7)

or after a Fourier transformation in x in obvious notation:

(!5) t____) + ik~k&7) = 0.

Eq. (13) is a kind of continuity equation or macroscopic equation for
this model.

4. The Laplace transform method. Put now:

h,,(c) = D dr e- "'hk(c, 7);

then one gets from (12):

(16) (p + y + ikc)hk.P = hk(c, 0) + 12 (pt, + c~kP).

But from (15) follows:

Okkv = ;k [Pk(O) - Pkl

Put this in (16), then:

hkP hk(c, 0) ,Pk(O) + + YPkp I - cp/ik
p + y + ikc +ik(2n)"p + y + ikc (27) 112 p + y + ikc
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Multiply with exp(- c2/2) and integrate over c. One then gets a trap
for pk, and one finds:

Mh(c, 0) + (2 Pk(O)
(18) PkPGpk)f, dc ik(2ir)11  e- 2 /2

G(p, k), p + + ikc

with:
I• - cp/ik 212,

G(p, k) = I Y /2 dc e-c(21")l'= f. p +' y +kce

This put in (17) determines hk, completely in terms of the initial data
hk(v, 0) and pk(O). In fact once p(x, -) is known by inversion of (18),
it is quite easy to invert (16) and one finds:

h(x, c, 7) = e "-h(x - cv, r, 0) + (2 / dr' e- '"
(19) 2lI

x [p(x - ,-', 7 - r') + c4(x - ,-,',r -v ')].

This shows that the influence of the initial distribution damps out
in time and that for large 7 the distribution function h(x, c, v) depends
only on the "macroscopic" quantities p and 0.

5. The normal mode method. This method is perhaps more physical,
and anyway it is more familiar. Go back to (12) and seek solutions of
the form:

hk(c, 'r) = hok(c) e-

The function hk((c) is the eigenfunction or normal mode corresponding
to the eigenfrequency w. One gets from (12):

(20) (-iw + ), + ikc)h,,k = (2 )(Pk + C0.0

and from (15):

(21) Wpk = kO.A

Because the equation (20) is homogeneous in hk, one can always
normalize ho, so that:

(22) poik = f 7M dc e -hM(c) I

and then from (20) and (21) one gets:

(23) (- + y + ikc)h,,k •( ! + ) ( 0c
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Now one has to watch out! From (23) one can only conclude:

(24) hk(C)+iY+ ( 12 1 +wclk
k ) (2,r)'1 ikc - io + y

where A is arbitrary. To find the spectrum of eigenfrequencies w,
one has to distinguish two cases:

(a) e = (w + iy)/k is real. Then from the normalization condition
(22) one gets:

I =f 2+ dc I + 'c/k e-C2 /I A-Cas +ik(2,')1'I c - e

where the principal value of the integral is meant. This determines A
and hence for fixed real k, there is a continuum of complex eigen-
frequencies all with imaginary part equal to -iy. For these modes
one can not speak of a dispersion law since there is no relation between

and k.
(b) e is not real. Then since c is real, one can omit in (24) the

&-function. From the normalization condition one then finds:

(25) 1= 2"f: dc I + `C/ke-C2 Y2 .ik(2,0)',f c-

The right-hand side is an analytic function of w (always for fixed real k)
everywhere, except on the line where the imaginary part of W is -iy.
Hence (25) can only be fulfilled for a discrete set of values of wa (which
may of course be the null set) for each value of k. For these discrete
modes there is therefore a dispersion law, and they are the collective
modes among which there must be the sound propagation.

The connection between the two methods is clear. The modes are
the poles in the p-plane in the expression (18) for the Fourier-Laplace
transform of the density p. Especially Eq. (25) is just the equation
Q(--iw, k) = 0. I will therefore not further elaborate on the deriva-
tion of the solution of the initial value problem by means of the
normal modes.

Because in this simple case the Eq. (25) for the discrete modes is
quite explicit and simple, it is possible to find the discrete modes and
to follow them as functions of k. Put:

:=wf/k, x = y/k, C = : + ix,

F(C) = /2 dc e - c2 12
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then the transcendental equation (25) can be written in the form:

(26) H(x, C) - x2{(F(C) + 1) + ix{(( 2 + I)F(C) + C) + 1 = 0

and one can prove (I)

(27) H*(x, ) = H(- x, C*) = H(x, - 4*)
where the star denotes the complex conjugate.

(2) For x > 0 (that is k > 0) H(x, C) has no roots in the lower
half plane, and zero or two roots (depending on the value of x) in the

Im .)

Im C. plane

Spiano j~jj( Re

\ Re 1;
Continuum Continuum

Figure 2 Figure 3

upper half plane. Because of (27) the two roots (if present) will have
the same imaginary part and opposite sign for the real part. They
correspond to a damped sound wave going to the right and to the left.
For x < 0, that is k < 0, one gets because of (27) the complex con-
jugate solutions.

(3) For x large (or k small, or long wave length) one always has
the two roots, and, say, for the one in the first quadrant one gets the
asymptotic series:

i + I 6i- 2X2 ? •

Putting w = ,- ia, this leads to the dispersion law

V wI 
k2

and an absorption coefficient:

k ( +6k2+)
V V
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which are similar to the series expansions (8) and which are in fact
identical with what one would obtain by applying the Wang-Chang
method to Eq. (II).

(4) For decreasing x (or decreasing wave length) V and a increase
monotonically till x = xcrit = 0.724. .. For x < Xcrit there are no
more discrete modes. The paths of the two roots are shown in Fig. 2
in the C-plane and in Fig. 3 in the w-plane. The velocity increases
about 10% and the damping increases until it has become as large as
for the continuum modes. A similar discussion can be carried out
for the more realistic three-dimensional equation (10). The normal
mode spectrum consists of a continuum for which the imaginary part
of w,, is equal to -no, and three discrete modes if x = na/k is suffi-
ciently large. For x - ' , these modes correspond to z = wo, k = 0,
± (5/6)Y 2, which are the same as found by the zero approximation of
the Wang-Chang determinant (7). For smaller x or shorter wave
length one obtains series expansions like (8) for the propagating
mode but now one can prove that these series are asymptotic. The
third mode, that is the one for which z becomes zero for x -* oo,
always is purely imaginary and is not a propagating mode. It can
perhaps be called a diffusion mode. There is again a critical value of
x for which the damping of the propagating modes has become n,
so that they then merge with the continuum. The paths of the discrete
zero's seem more complex and need further investigation. It may
be that V as function of k will go through a maximum before the
critical value of k is reached.

From the physical point of view, it seems to me that the qualitative
features of the results, namely: the existence of the continuum (or of
single particle modes), sound as one of the discrete modes, the existence
of a critical frequency for the sound modes are probably general and
are physically reasonable consequences of the existence of a total
cross-section; that is, of a lower bound of the spectrum of relaxation
times. I am very hopeful that it will lead to a real explanation of
what sound is at very high frequencies and will help to explain the
Greenspan experiments and perhaps will suggest other experiments.
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1. M. Greenspan, J. Acoust. Soc. Am. 22 (1950) 568. In the
actual experiments the frequency of the sound was kept fixed and the
mean free path A was varied by changing the pressure of the Helium
gas. Since the relevant parameter is A/A this is equivalent to changing
the frequency while keeping the pressure of the gas constant. The
restriction to mono-atomic gases should be emphasized. For poly-
atomic gases there is an additional cause for the dispersion and
absorption of sound, which is due to the lag in the transfer of the
translational energy into internal energy, and which usually completely
masks the dispersion of sound with which we are concerned here.

2. For the detailed discussion we refer to the report cited in Note 7,
Chapter IV. The calculations were done for the real Maxwell model.
Since in this case there is no total cross-section o, another form for
the dimensionless parameter of order A/A in the development is needed.
We chose sW/p V2o, where IA is again the viscosity coefficient. The
results were:

I- 215 ~j 41.15.10i (Itv )4 }

2.99 1"" )2 + 56.7 ("w)}"

iw2 {7 
51 5 5 (•j +"'}

-Pw I.2-• 11.9( j_)2 +..

which shows how fast the coefficients increase.

3. None of this work has as yet been published. A joint publica-
tion is in preparation.

4. The one-dimensional Boltzmann-like equation proposed by
M. Kac (Proceedings of the Third Berkeley Symposium on Mathe-
matics, Statistics and Probability, Vol. 3, pp. 171-193) has the form:iof 3ff _ f r

-L + v ±f v dvi dO F(O){f(x, v', t)f(x, r', t)
(a) a - f(x, r, t)f(x, v1, t)}

99



100 THE PROPAGATION OF SOUND

where v' = vcos9 + vsin0, v, = -vsin9 + vicos, and where
F(M) = F(-9) is a dimensionless "collision" probability. Just as
the real Boltzmann equation it leads to an equilibrium distribution:

fo = A e--v2

and by linearizing, putting f = fo(I + h(x, v, t)), one obtains:

+ h vhS+ c = vAJ(h),

(b)
J(h) = dc, exp( - c0/2) f dO F(O)(h' + hi - h - h1)

with c = v(29)112 and i- = t(20)112. It is easy to show that the eigen-
functions of the dimensionless linear operator J(h) are the Hermite
polynomials H.(c) (also sometimes written He.(c), since the weight
function is exp( - c2/2)) and that the corresponding eigenvalues are:

(c) A. = (21r), 2 f" dO F(0){(cos 8)1 + (-, )n(sin 0) - I - 8.0

In terms af the eigenfunctions one can write J(h) in the form:

(d) JMh) f dc, L(c, cl)h(cl)

with:

L(c, cl) = X H2(c)H.(,) exp(-c•/2)

which is similar to Eq. (9) of the text.
The mutilation of the linearized equation starts from the form

(d) of J(h). Putting A0 = A, = 0 and all other eigenvalues equal to
-y/MA leads to Eq. (II) of the text. It should be pointed out that this

mutilation is not analogous to what was done in the three-dimensional
case, because from (c) follows that AO = A2 = 0, while all other
eigenvalues are negative and converging to:

-(2n) 1 /2f dO F(8).

In the Kac successive approximation method applied to (d) one would
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put therefore in zeroth approximation Ao = A2 - 0 and all other
eigenvalues equal to -y/vA. This leads to the equation:

Sh ,~h = ' I'
-+ yh + col' ( = 1  - dc, exp-c•/2)

x{+ ( -I)(_ l)}h(ci).X f I+ (C2 _I)C2-

However it can be shown that this equation does not lead to collective
modes which are similar to sound.



CHAPTER V!

The Chapman-Enskog Development

I. Introduction. We now return to the general non-linear Boltzmann
equation:

+/ V.f +a.• d, .I d. gl(g, 0)[ f 71' -. ff,]I(I) - +. f f

discussed in Chapter IV, and we will consider the general problem of
how the usual macroscopic description of the gas in terms of the
hydrodynamical equations is contained in the Boltzmann equation (I).
This problem has a long history and both Maxwell and Boltzmann
have given it a great deal of attention. The first completely satis-
factory solution was given in the dissertation of Enskog in 1917, which
was inspired by Hilbert, and independently by Chapman, who used
another method which goes back to Maxwell but which led to the
same conclusions.' I will only try to sketch this theory, and I want
to emphasize the mathematical features, which I think are quite
curious and fundamental. From the physical point of view, this
theory constitutes one of the t'ew successful descriptions of a class of
non-equilibrium phenomena in terms of the intermolecular forces.

2. The general conservation laws. The first step is to derive from
(I) the so-called transport equation for a quantity 4,(v) which a mole-
cule can carry "on its back". Defining:

(2) t)"f =~- n(r f)= =-Jv•
fdvf n

where n(r, ) is the number density, one gets from (I) by multiplying
with 0 and integrating:

+ (n ) - na TO
(3) x

S f A dvfdv i f diQgl(g, OX + 0, - 0'- 0)[f:f' - ff]
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where in the collision term the same transformations, used in the proof
of Boltzmann's H-theorem (see Chapter IV, Note 2) are used again.
Take now for 0(y) successively the five quantities I, v, v2 which are
conserved in a collision. For these the right-hand side of (3) vanishes
and after a few simple transformations one can write the resulting
five equations in the form:

(a) at+ j(.u 8 ) = 0,

Du, 1 uu, , pa -P:.

(4) (b) p D - L, + U. ý-'• pa, -

(c) -D t -) + iq.=

where we have used the index notation with the usual summation
convention, and where:

p(r, t) = mn = the mass density;

u,(r, 1) = fj = the average velocity;

U, = I-I = the thermal velocity;

Q(r, t) = p = the thermal energy density;

P,,(r. 0) = pUtUj = the pressure tensor (obviously

symmetric);

qfI, 0 pU2- = the heat current density;

D,, = I ,L-. + LU, = the rate of strain tensor.

The equations (4) express the conservation laws of mass, momentum
and energy.2 They are a rigorous consequence of the Boltzmann
equation, but of course they are still an empty frame, since we do not
know how to express the P, and the q, in terms of the average flow
velocity, the density and the temperature. Or, in other words, one
still has to derive the Newton and Fourier phenomenological laws for
the friction and the heat conduction.

3. Tim Cbapman-Emskog developmemt. To do this one has somehow
to solve the initial value problem for the Boltzmann equation, since to
find the average values P,, and q, one must know the distribution



104 TIlE CHAPMAN-ENSKOO DEVELOPMENT

functionf Now we discussed already in Chapter IV that the approach
to equilibrium proceeds so to say in two stages. Because of the
collisions any initial distribution will reach very quickly (in a time of
the order of the mean free time to AI/(kTIm) 112) a local Maxwell
distribution:

(5) f(o) = m 3 -2 M -U)

where the macroscopic variables n, u and T are still functions of r
and t. In the second stage the slow relaxation of the macroscopic
variables to their equilibrium values takes place, and it is this stage
which we want to follow in more detail. Now the argument goes as
follows:

I. First note that if one uses (5) to calculate Pil and qj one gets:
3

q, 0 , Q = p,

(6) P =p8,, with p= nkT

so that (4) becomes:

(a) + div(Pu) = 0,

Do
(7) (b) p 5t = p - grad p,

(c) D (pT-312) = 0

which are the ideal, or Euler hydrodynamical equations with adiabatic
temperature changes and with an equation of state which is still the
ideal gas law.

2. Of course the two stages of the relaxation to equilibrium are not
sharply separated, so that one must not expect that after a time of
order to the distribution function is precisely of the form (5). Instead
it seems more reasonable to put in Eq. (I):

(8) f = fP° [V + 00r, r, t))

and to keep in the collision term only terms linear in 0. Finally,
since it is the streaming term in (I) acting on n, u and T which causes
the deviation 0 from the local Maxwell distribution (5), it is sufficient
to put only f(°) in these streaming terms. Thus one is led to:

(9) + I'-, + a,
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where:

() = fA,,io) fdD g(g,e)[0' + #; - 0 - 0,1

is the same linearized collision operator introduced in Chapter IV.
Note however the different way in which one now has linearized the
Boltzmann equation. The resulting equation (9) is an inhomogeneous
linear integral equation, in contrast to the homogeneous equation
discussed in the previous chapter.

3. One now runs into the following trouble. The homogeneous
equation C(#) = 0 has the five solutions I, v, and v1 (which I will
call #,), and therefore (9) has in general no solution. The solubility
conditions are that the left-hand side of (9) must be orthogonal to the
0, and these five conditions turn out to be the Euler equations (7) for
n, u and T with p = nkT.3 These equations allow us to express the
time derivatives of the macroscopic variables in terms of their spatial
derivatives and doing this one then finds: 4

+ _l• , + a. , P)[1' T U.(M V2;

(10) 
+ ( -U 2

I •Dn U.U# - 1 ,S.'U2

where U, = v, - u, is again the thermal velocity. With (10) for the
left-hand side of (9), this equation has a solution of course, which is
also unique if we require that:

(II) fdv ,f0,+)O =0

which means physically that the macroscopic variables must always be
determined from -O) alone.

4. With the solution for q, one then can calculate the pressure
tensor P1, and the heat flux q, for which one finds the well-known
Newton and Fourier laws:

P., = pS, - 2.(D,, - D.S,,
(12) bT

q, = K FX,

but with known values for the viscosity and heat conduction coefficients
ft and K. Putting (12) into the general conservation laws (4) then
leads to the Navier-Stokes equations of hydrodynamics.
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4. Solutoim of the Integral equatio (9). To find the solution for 0 is
the hardest part of the theory. To give you some idea how it goes
let me consider again the quasi-Maxwell model. Since the right-hand
side of (10) and also fb°) depend only on the thermal velocity U,, 0
will also depend only on U,. Using dimensionless velocity variables:

C= m ,) 2 U.

Eq. (9) becomes:

(13) 1. C(2 + 2D.,( m--) (C.C- 8,,C2 n )

with: I f , ,-fý
J(W) = ; 3 , 2 fdce f dQF(O)[0' + Ol-1'-#1.

The conditions (II) are equivalent to:

(14) fdc{ e- C2(c) = 0.

Eq. (13) is especially simple for the Maxwell model, since the functions
c,(5/2 - c2) and cc, - (1/3) 8 ,,c2 which occur on the left-hand side of
(13) are eigenfunctions of the operator J(O~). In the notation of
Chapter IV they are 011m (with m = 0, ± I) and #02. (with m = 0,
± I, ± 2). Since furthermore I, c, c2 - 3/2 are the eigenfunctions

Oooo, #o0. and Ooo a linear combination of the functions 0,,. and
o02, will also fulfill the condition (14). Hence one easily sees that an

exact solution of ( 13) is:

(15)
0(c) = I I iT(x, c 2 -) + 2 1 12  

. Da.N(C.C - .8.OC2)

where the eigenvalues A,, and A0 2 can be found from the general
formula (24) of Chapter IV. This formula gives:

(16 o2 = - •fdt2sin3 OF(O).
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One then finds:

qi= U pU 2 = v (2 k dc e-c1 4(C)cjc

+2nkTPil =PUNY = p811 + W 31 fde e-•ccc

-=pst + ý (D., - D .. 8,)•
expresons ofthe 4 A02 (9(0

One gets therefore the Fourier and Newton laws (12), and one obtains
for the heat conductivity and the viscosity coefficients the explicit
expressions:

5 ink /2k T 112 m (2.k _1,2'
(17) ; A, - '- J )A• 2 " 0o2

which are both positive since All and A.2 are negative. Both are
independent of the density and, therefore, functions of the temperature
alone. The independence of density is one of the classical results of
the kinetic theory of gases and is in accord with experiment. The
temperature dependence is different for different molecular models.
The dependence - V ;2 which holds according to (17) for the quasi-
Maxwell model (if (Y is taken independent of T), is also valid for the
elastic sphere model.' It only agrees qualitatively with experiment.

From (17) one still finds:

15 5
(18) K = 1- k C, = C,

which is confirmed very well for mono-atomic gases; 5/2 is the so-
called Eucken constant.

Also for other molecular models, in fact for an)' differential cross-
section I(g, 0) it is possible to find the solution of the integral equation
(9). The best method (first suggested by Burnett) is to develop 0
always in the eigenfunctions 0,,. of the Maxwell model. For the
coefficients one then gets an infinite set of linear equations, which can
be solved successively and at least for repulsive forces inversely
proportional to some power of r, the convergence of this procedure
has been established.'

It should be emphasized that one thus obtains ,K and ut expressed
explicitly in terms of I(Ag, 0) and hence in terms of the force law. One
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can therefore predict the magnitude and temperature dependence of
,c and is if one knows the intermolecular forces as deduced, say, from
the second virial coefficient. Hirschfelder and co-workers have made
such calculations and they got quite a good check with experiment.
I think there is no doubt that one has found in this way the right
explanation of the non-equilibrium macroscopic phenomena of internal
friction and heat conduction of a gas.

5. Higher approximations; general form of the development. The
Chapman-Enskog development is a successive approximation or
-perturbation method (with the local Maxwell distribution (5) as the
zeroth order) which can be continued in a systematic way. Since the
formulas are a bit long, let me only say that in the nth order one gets
for the deviation 0'"' from f,0) an inhomogeneous integral equation
of the same form as (9), that is:

(19) f'0 )C(W) = L.

where L. depends on the lower order deviatic as. The solubility con-
ditions are (or better, the method :s ;o arranged that they are) the
hydrodynamical equations for the macroscopic quantities found in
the previous order, just as the solubility conditions for (9), that is for

f'°'C(04"') = L,

are the zero-order or Euler hydrodynamical equations. Together

with an expansion of the distribution function of the form:

(20) f= f-(0 ,(! + 0(1, + 0(2) +...)

one obtains therefore successive order hydrodynamical equatiors:
0th order Euler, I st order Navier-Stokes, 2nd order Burnett equations,
and so on.

What is the expansion parameter? It turns out that the expansion
(20) can be written symbolically as:

J= f°'0 [I + aj(r)(AV) + a2(('XAV) 2 +...

where A - (no) - is the mean free path, and the gradient acts on the
macroscopic variables u(r, t) and T(r, t). Compare Eq. (15) for the
first approximation. In the second approximation one gets both
second derivatives of u and Tand squares of the first derivatives. One
can therefore say that the expansion parameter is the relative change of
the macroscopic variables over a mean free path. I will call it the uni.
formity parameter 0. Only if this parameter is small, that is if the
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u and T vary slowly, will the expansion show a semblance of con-
vergence. For sound waves 9 - A/A, so that the Chapman-Enskog
development can be expected to give expansions of the velocity and
absorption coefficient as discussed in Chapter V. In fact if one
calculates say with the Maxwell model the dispersion law of sound from
the successive order hydrodynamical equations, then one obtains the
same expansion as found by the Wang-Chang methud. Clearly for
strong shock waves where 9 - A/d i 1, d = thickness of the shock,
the Chapman-Enskog development will not give a good approximation.

Finally note that the successive order hydrodynamical equations
are always of thefirst order in the time derivatives of the macroscopic
variables, but are successively of higher order in the space derivatives.
If one wants to apply these equations to the flow of the gas around
solid bodies or between solid walls, the question of the boundary
conditions has to be answered. More and more conditions are clearly
required and one can expect therefore successive boundary layer
phenomena similar to the well-known Prandtl boundary layer theory
which is so characteristic for the approximation of the Navier-Stokes
equations by the (lower order) Euler equations. However beyond the
Navier-Stokes equations this question has not been investigated
systematically, which is one of the reasons why the number of applica-
tions of the Burnett equations has been very limited. Physically it is
reasonable and customary to assume that the molecules which hit the
wall are partially specularly reflected and that the remaining ones are
re-emitted by the wall with a Maxwell distribution with a temperature
and average velocity determined by the wall. However, it is not clear
how one can express this picture in terms of boundary conditions on
the macroscopic variables which at every stage would insure an unique
solution of the flow problem.

6. The character of the Chapmmn-Enskog development. Let me
summarize in more general terms what we have found so far. By
means of a successive approximation method, we have obtained a
solution of the Boltzmann equation of the form:

(21) f = f 0'°(r, vin, u, T) + f.')(r, ,In, u, T) +.

where each approximation f.1) is a function of r, v and of the macro-
scopic variables n, u, T and their spatial derivatives. The f"k) do not
depend on the time explicitly; in fact, remember that at any stage we
eliminated the time derivatives by means of the corresponding lower
order hydrodynamical equations. The time dependence is completely
governed by the time dependence of the macroscopic variables and
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these are determined by the hydrodynamical equations of successive
order which are obtained at the same time as (21), and which are of
the form:

87 =- (nu.),

(22) u., = VV,,(rIn, u, T) + Vi2'(r~n, u, T) +

OT = 1")(rln, u. T) + 8'
2)(rln, u, T) +....

Here again the successive approximations V"k) and 1`k) in the equation
of motion and in the energy equation depend on n, u, T and their
spatial derivatives but they do not depend on the time explicitly.
Both in (21) and (22) the successive orders may be considered to
correspond to successive powers of the uniformity parameter 0, which
is of the order:

(23) 0 = AlL .t to/T,

where A = mean free path; to L_ AI(kTIm)12 = mean free time or
average time between collisions; L = #/grad ý with v any macroscopic
quantity; To ! LI Vo = macroscopic relaxation time with V0 = sound
velocity.

The curious mathematical feature of the solution (21) of the Boltz-
mann equation is that apparently the whole temporal development of
f is determined by giving the initial values of n, u and T(which accord-
ing to (22) determine all later values), while from the Boltzmann
equation itself follows that one needs the whole initial distribution
f(r, v, 0), which is of course much more information than just the first
five moments in velocity, n(r, 0), u(r, 0) and 71r, 0). Since Hilbert
pointed out this feature of the solution (21), 1 usually call it the
Hilbert paradox.7

Physically one must expect that an initial distribution f(r, v, 0) in a
time of order to relaxes to a solution of the form (21), whatever the
initial distribution is. Or one can say that after a time of order t o
(initial chaotization period) a contraction of the description of the state
of the gas is possible, in which the temporal development will be
determined by much fewer variables. And the reason that these
variables are the macroscopic variables n, u and T, is clearly because
they correspond to the five quantities I, v and 02 which are conserved
in a collision. Therefore the collisions can not affect the n, u and T
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directly. They will stay constant in a time of order t. and in this
sense one can say that they are constants of the motion. They will
change with time only ' secularly" through the change of the distribu-
tion function and after a while they therefore completely govern the
temporal development of the state of the gas.

In my opinion, the idea of the contraction of the description of the
temporal development of the system, is a very fundamental insight.
It reminds one of the description through the "macroscopic" variables
Yi, Y2, ' ' ' in the Boltzmann-Gibbs picture of the approach to equili-
brium, which we discussed in Chapter 1. However now the variables
are not determined more or less arbitrarily by a macroscopic observer,
but are determined by the system itself, and it is shown that they form
a closed deterministic system for themselves, that is to say that their
initial values determine their later values.

Of course this contraction of the description, although very plausible,
has not really been proved! One would like to know in which precise
sense the solution of the initial value problem of the Boltzmann
equation is approximated by the Chapman-Enskog expansion (I),
and what the nature of the expansion is. I think it is very likely that
the expansion is not convergent but asymptotic (as suggested by the
application to the dispersion of sound), and that the approach of the
f(r, v, t) to a solution of type (1) is exponential or in other words that
the difference goes to zero as exp(- t/to). The latter is indicated by
the work of Grad (Comm. Pure Appl. Math. 2 (1949) 331). Instead
of the Chapman-Enskog expansion, Grad has proposed an approxima-
tion procedure in which the deviation 0 from the local Maxwell
distribution f"O) is developed in the appropriate three dimensional
Hermite polynomials in the thermal velocity U. The coefficients
(which are successive moments of the distribution f) are functions of
r and t, and the Boltzmann equation then leads to partial differential
equations in these coefficients. It is now quite striking, that Grad
could show that all moments which do not correspond to the macro-
scopic variables n, u and T (which are the first five moments) decay
like exp( - t/to) to the values which would follow from the Chapman-
Enskog development. I think it confirms and substantiates the idea
of the contraction of the description.
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1. D. Enskog, Kinetische Theorie der Vorgange in Massig Ver-
duinnten Gasen, Dissertation, Uppsala, 1917.

S. Chapman, Philos. Trans. Roy. Soc. London. Ser. A 216 (1916)
279; 217 (1917) 115.

The monograph of S. Chapman and T. G. Cowling (The Mathe-
matical Theory of Non-uniform Gases, Cambridge University Press,
1939; 2nd edition, 1955) follows the method of Enskog. We refer
to this book for further details. Compare also the treatment of the
theory by L. Waldmann in the Handbuch der Physik, Vol. XII,
Section E, p. 384 and in the book of J. 0. Hirschfelder, C. F. Curtiss
and R. B. Bird (Molecular Theory of Gases and Liquids, John Wiley
and Sons, New York, 1954, Chapters 7 and 8).

2. The form of the last equation in (4) is perhaps not quite familiar.
Phenomenologically it can be derived as follows. Consider a certain
portion of the gas of volume S?, then the work done per second by the
surrounding gas and by the outside forces on the gas inside S2 is:

(a) - ff da P,,u8 + fffdr pa.ugr
z. 12

where 1: is the surface of 92 a/nd do, is a surface element with the
normal outwards. Using Gauss' theorem, the equation of motion
(Eq. (4b)) and the symmetry of the pressure tensor P1 j, one can trans-
form (a) into:

(b) f f f [P.,D., + . Du"J
DD

This must be equal to the increase per second of the kinetic and
thermal energy of the gas inside .Q plus the kinetic and thermal energy
which flows out of .Q per second. Let e = (1/2)u 2 + (Q/p) be the
total energy per gram and let s = pfu + q be the total energy flux
density. Then one has therefore:

112
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DuaJI f a( + ffdoas

fffd,,[p.,D., + ,- fffd,(,O)+ f + d,.P.

f fffdl [T(.,) + +u +

f=ff d [p + pu- + ' x0 J

D

fffd (P +

using the continuity equation. Since:

De Dua D IQ\

this gives the integral form of Eq. (4c).

3. Although this is almost self-evident from the way the Euler
equations (7) follow through (4) from the general transport equation
(3), one might as well verify it directly. The orthogonality of the left
side of (9) to , 1 = I, leads to:

)fdv/[(0) + f dv r.Iof + af °dv 0.

The last integral is zero and the first two terms clearly give the con-
tinuity equation:

On i)
(c) + - (nu.) = 0.

The orthogonality condition for v, leads to:

o'- f 'v t!,f( + f dv v,v'f 0° + at dv V, = 0.

Carrying out the integrals, one obtains:

(d) -(nu,) + a (nulu.) + -a k - na, = 0

and this becomes the equation of motion (7b) by using (c) and by
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putting p = nkT. We leave it to the reader to show that the ortho-
gonality condition for #s = v2 leads to (7c).

4. By differentiating logarithmically one. gets:

0e o '~t + - + -32 + Mr U( + Va 8
+ - - u.) (84- + ,,' au-) - M -a,,(v, -

Now from (7):

(nTl-3 
2) = - nT-312),

i1T iýT 2 Tu,-= Uax, - J x.

i'u, iu, I Op
W- -= -u 8 •+ a, .-.Pax,

Substituting these expressions for the time derivatives in (e), and using:

it'p = k T +n T

OT 3 2) = T -
3 1 - 3 nT- 5,2 OT

i~x1  2 tx

one obtains Eq. (10) of the text, and it is easy to verify that the right-
hand side of (10) is orthogonal to 1, U, and U 2 and therefore to the #,.

5. See Chapman and Cowling, I.c. Chapter 10, where one finds

the explicit expressions of 1, and K for various molecular models.
For the real Maxwell model u and ,K are proportional to the first
power of the temperature. That we found for the quasi Maxwell
model a dependence - T' 2 is clearly due to the artificial assumption
that the dimensionless function F(O) is independent of the temperature.

6. See again Chapman and Cowling, I.c. Chapters 7, 9 and 10, and
for the Lennard-Jones (6-12) potential, Hirschfelder, Curtiss and Bird,
l.c. Chapter 8, §4. The papers of D. Burnett are in the Proc. London
Math. Soc. 39 (1935) 385 and 40 (1935) 382.

In first approximation for any differential cross-section J(g, 0) one
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"puts # equal to a linear combination of the same functions #. and
002. occurring in the solution for the Maxwell model. Using ordinary
units this means that one makes the Ansatz:

(f) T = IL u.(cU2 - ý)X +2aD (2UUx-•,U, - -8,.U2)X2

where a = m/2kT, and XI, X2 are constants. This leads to the heat
flux density:

2 f •UOq=] 'jdU UUf 0

mn.a )312 1 f dU UU.U2( U2 --aU2

BT

with: 5k V312 ()3/2
(g) x --- ,,2 n X1.

Similarly, the second part of the Ansatz (f) leads to the viscosity
coefficient:

m-e(,)1 a312
(h) P= 2.1,2 n(c)( X2.

Of course, the Ansatz (f) can now only be an approximate solution
of the Enskog integral equation (see Eqs. (9) and (10) of the text):

I Tu.i(aU _ - + 2aD,,(UuU - U -

C(#) = n () f dU, e-U? dQ gi(g, 0)(0' + 01 - -

and in order to determine the Ansatz (f) completely one must still find
the quantities X, and X2. To do this we require that they are the first
development coefficients in the development in the eigenfunctions
0,1. (r = I, 2...) and 0,2. (r = 0, I, 2,.) of the Maxwell model.
This leads immediately to:

(i)dUeau2UuUuU2 5

f dU ea UzU - )CUa 2- )

JdU e-a2Ua(UU 80jiU2)(uU.V - 8.U

f fdU ea--3u2 u -U" U, H U" 8"VU2)
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The calculation of the integrals is straightforward and we will only
indicate some of the details for Xi. The numerator is:

(k) 4w f dU U4(aU2 - 5 '-,v- 15 _1

-0) 2 a-ST/-2

The denominator by means of the Boltzmann H-theorem transforma-
tion can be written as:

(1) ,()32 ffdu dUU e -eg U• f dv2 gl(ge)

J[U.(_U2 _- )l4[u.(au•)]2

where the 4-symbol means

A(f(U)) f(U') + f(U•) - f(U) - f(U1 ).

Clearly the terms with the factor 5/2 in the 4-symbols in (1) can be
omitted because of momentum conservation. Introduce now the
center of mass velocity U, = (1/2)(U + U1) = (1/2)(U' + U'), then:

I 1
U U + 2 g, U' UC + 2g'

! I
U, Qu - Ig u, U0 - 1g',

U 2 + U2 = 2UIc + Ig, dUdU1 =dUcdg,

4(UU 2) = (U.g')g; - (U,.g)g,.

The integral over Uc can then be carried out and (I) becomes after
integrating over the directions of g:

(m) -n(a) 3122r! 512 fdgg7 exp(2-"2) fdfl(l - cos2 8)I(g, ,).

This is as far as one can carry out the integral without making special
assumptions about I(g, 0). Introducing (k) and (m) in (i) and the
resulting value for X, in the equation (g) for the heat conductivity
coefficient gives the final answer:

25 I_________

K = ? cO(rinkT)1 1 2

1f dG G7 e- Q(g)
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where:

c.= G g U

and Q(g) is the so-called transport cross-section:

Q(g) = 2,r fo dO sin' 0 i(g, 0).

The calculation of X2 and hence of u goes along similar lines, and one
finds:

it (-fmk T) 1 12 ®
fo dG G7 e -G2 Q(g)

so that the relation (18) of the text remains valid in this approximation.

7. Hilbert in his paper on the kinetic theory of gases (Grundziige
einer Ailgemeinen Theorie der Linearen Integralgleichungen, Teubner
Verlag, Leipzig, 1912; Chapter 22) speaks of the macroscopic causality
theorem in this context. In our opinion the word theorem is con-
fusing, because macroscopic causality (which means that the state of
the gas is determined by giving at time t = 0 the density, velocity and
temperature distribution) is clearly a requirement which one imposes
on the solution of the Boltzmann equation. The word theorem
suggests also that the macroscopic causality has been proved by the
Chapman-Enskog development, which is clearly not the case.



CHAPTER VII

The Kinetic Theory of Dense Gases

1. Introduction; the problem of deriving the Boltzmann equation. The
recent development of the kinetic theory of dense systems has started
from the question how to derive the Boltzmann equation from the
basic Liouville theorem. Since the subject is still controversial, let
me first try to explain why one would want to derive the Boltzmann
equation.

It is of course true that the way Boltzmann arrived at his equation,
which we presented in Chapter IV, was heuristic and that it therefore
invites a critical analysis. Historically the criticism of the kinetic
method of Boltzmann was mainly directed toward the H-theorem
and was an expression of the feeling of discomfort that somehow using
reversible mechanical models, Boltzmann had succeeded in explaining
the typical irreversible approach to equilibrium. It somehow seemed
a swindle! I will not discuss the famous classical objections of
Loschmidt and Zermelo, since they were answered by the statistical
method of Boltzmann and the Boltzmann-Gibbs picture which evolved
from it. But it leaves completely open the question of how the kinetic
method and especially the Boltzmann equation fits into the general
picture of the approach to equilibrium.

Besides the logical gap, there are also practical reasons why one
would like to derive the Boltzmann equation. Clearly the applica-
bility of the Boltzmann equation is limited to sufficiently dilute gases,
so that only binary collisions have to be taken into account. It is the
restriction to binary collisions which has as consequence that the
transport coefficients K and it are independent of the density. Qualita-
tively this comes about since if only binary collisions are important
the mean free path A is inversely proportional to the number density
(i.e. A - I/na), and, hence, in all transport processes one has an exact
compensation of the number of transporting particles (,- n) and the
amount transported by each of them ( - A, hence - I/n) so that the
result is independent of it. If triple and higher order collisions must
be taken into account, one would expect that:
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(I) A I
no(l + cin + cn'+ -...)

since the number of triple, quadruple -collisions in which a single
given particle takes part will clearly be -n 2 , n',.... The compensa-
tion of the number of particles transporting and the amount trans-
ported by each would no longer be exact, and one would expect
virial expansions for the transport coefficients of the form:

p = Io(T) + p1(T)n + 1,2(T)n2 +..,
(2)

K = Ko(T) + Ki(T)n + K2(T)n2 +...

where I0 and K0 are the values given by the Chapman-Enskog theory.
In addition one would expect that at higher densities even for mono-
atomic gases, the so-called second viscosity coefficient (or bulk vis-
cosity) would appear ( n2, I think, since it will depend on the number
of quasi binary molecules). There is considerable experimental
material about the density dependence of K and !, and of the bulk
viscosity for dense gases, and at present one is still completely unable
to correlate the experiments with theory. In this respect the contrast
with the equilibrium theory of non-ideal gases is quite striking.
Clearly the expected expansions (2) are quite similar to the virial
expansion of the equation of state:
(3) = I + B(T) + C(T) D(T)

kT1 V 2 V

In fact we saw that B(T) and p 0(T), K0(T) are directly related to each
other since they have to do with only binary interactions. Similarly
one would expect that the third virial coefficient C(T) would be related
to u,(T) and K,(T), and so on. But, while we know the explicit
expressions for C(T), D(T), • • • in terms of the intermolecular forces,
"a similar expression for the transport virial coefficients is not known.

To come back to the Boltzmann equation, it is clear that to develop
"a theory for the virial expansion of the transport coefficients one must
generalize the Boltzmann equation so as to take into account the triple
and higher collisions. Unfortunately, lacking Boltzmann's intuition,
it has (at least till now!) not been evident how one should do this, and
hence one has been forced back to see whether one could "derive"
the ordinary Boltzmann equation from a more fundamental point of
view, with the hope that this would then also indicate the generaliza-
tion to higher densities.

In this chapter I will present the ideas and the method of Bogoliubov.
I should say that although these ideas are in my opinion very plausible
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and although the method has at least the virtue that it gives a definite
recipe how to generalize the Boltzmann equation, it is not so that they
have led to definite results, which are physically so ev'!ent or which
are so completely in agreement with experiment, that there could not
be any doubt about their validity. As a result the subject is still
controversial. Other methods to derive the Boltzmann equation have
been proposed by Kirkwood and co-workers, by M. S. Green, by
Prigogine and co-workers, and by a number of other authors.' It
seems to me that the various methods begin to converge towards each
other and perhaps they will justify the ideas of Bogoliubov. But
further clarification is certainly needed!

2. The B-B-G-K-Y hierarchy. Since we do not know how to proceed
by intuitive methods, we have to go back to the Liouville equation,
which is so to say the basic equation of statistical mechanics. Con-
sider again our system of N particles with known interactions in a
volume V. The state of the whole gas is described by the probability
distribution in r-space DN(XI, X 2 , ', XN,,; 0, where xi - (r,, p)
denotes the coordinates and momenta of the ith particle. We take
this distribution to be normalized to unity:

(4) f.. fdxl...dx, DN(xl, '',XN, t)=I

and require, for a gas of identical particles, that DN be a symmetric
function of xi, x2," ' ", x,. The change of DN with time is governed by
the Liouville equation:

aDN = {-- aIOHN ODN OHaN aDN(5) '-i = JHN Dp, -• -* /_-T t W

with

(6) HNv = ý + U(ri)] + Ir, - rI)

Here U(r,) is the wall potential (no other outside forces will be assumed)
and 0( Ir, - r,J) is the interaction potential which is assumed to be of
the usual van der Waals form discussed in Chapter 1.

Instead of using Poisson brackets as in (5) it is convenient to intro-
duce a Hamiltonian operator:

,N(X "... XN) = E . - 2$Im or, O j

(7)
0= 01.a + a
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then (5) can be written:

ODN •N

(8)-

Note that we have omitted the wall potential due to the vessel V, so
that strictly (8) is only valid if the particles are inside V. We will
soon go to the limit N - oo, V - oo, v = V/N finite and then the

effect of the walls will drop out completely so that (8) can be used.
From (5) or (8) follows by integration a hierarchy of equations for the
partial distribution functions:

(9) F.(xl, .. ., x.) = V1 f ... f D. dx..,. .dx.

which has been derived by many authors and which I call therefore
the B(ogoliubov)-B(orn)-G(reen)-K(irkwood)-Y(von) hierarchy.' One
finds:

(10) O-F + X.F, = - dx. + ,+.,F,+1.
-If

PROOF. Integrating (8) over x,+x...,XN and multiplying with V%
one obtains:

O"+ F. = V3 . d. d {I ... dxx . ,

f .. f -8+1MO,

+ il,, + y i , ,(x, , x,, t).
19s;:+1615N 4+1 kc1 J

Since DN must be assumed to vanish for large p, and r, the first and
third terms in the brackets integrate to zero. The second term,
because of the symmetry of DN can be written in the form:

V(N - s) •f dx.+, 01., +1 dx.+ 2 .. .dxN

-= -s v Y dx, O+',+ 1F,+ (x', X+
V f -~~ . e 1

Hence in the limit N - oo, V -,- oo, v = V/N and s fixed one obtains
the right-hand side of (10).
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Since we shall be especially interested in the cases s - I and s - 2,
let me write out these cases more explicitly. One gets:

(a) •.-T + E'" F,-• =I

(b) -F + (El. + m P 2. ' ,.2)F2

= I f dxA( 1 3 + 023)FA(x, X2, x 3, 0).

Note that (I la) already smells a bit like the Boltzmann equation.

But of course the connection is still far from clear.

3. The him of Bogollubov. The Liouville equation (5) or the hier-
archy (10) to which it is equivalent embodies the mechanical assump-
tions. Knowing DN(O) at t = 0, (5) will tell us in principle what DN
is at any tat.,: ';.me. 11,,:t how does one know DN(O)? The answer
is, I think, th.!,. one i.• n vly interested in those phenomena which are
independent of DN(O), or rather depend only on a few average values
over DN(O). To see how such a description, essentially independent
of DN(O), can come about we have first to look at the basic relaxation
times. They are:

(a) the time of a collision- rolv., ro = range of the forces (which
from now on we will assume to be purely repulsive) and vv is some
average thermal velocity.

(b) the time between collisions, to = A/z'v; A = mean free path.
(c) the macroscopic relaxation time. To = LIVo; L is a macro-

scopic length and Vo is the sound velocity (= i').
In the usual situations: slowly varying macroscopic phenomena, not

too dense gases (therefore not for liquids for which ro ! A), one will
have:

(12) - < t0 << TO.

Now Bogoliubov says that one can expect that after an initial
chaotization time of order 7-, and for any DN(O) a stage is reached-
Bogoliubov calls it the kinetic stage-in which the further temporal
development of the gas is determined completely by the temporal
change of the first distribution function F,(x, t) which in turn is
governed by an equation of the form:

(13) O-- A(xF)
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where A depends functionally on F, but does not depend on the time
explicitly. All the higher distribution functions F, depend on the
time only through F, and have therefore the form:

(14) F, = F,(xi,..., xIF1) (s z 2).

To elucidate, note:
(a) Eqs. (13) and (14) represent a contraction of the description of

the state of the gas, which is quite analogous to the Chapman-Enskog
solution of the Boltzmann equation which describes the second or
hydrodynamical stage of the total relaxation process. Eq. (13) is
analogous to the Ansatz for the hydrodynamical equations (Eq. (22),
Chapter VI), and Eq. (14) to the Ansatz for the solution of the Boltz-
mann equation (Eq. (21), Chapter VI) which we discussed in the
previous chapter.

(b) Just as in the hydrodynamical stage the contraction is coupled
with an expansion in the uniformity parameter 0 • to/T 9, in the
kinetic stage the contraction is coupled with an expansion in powers of
I/v (virial expansion). Bogoliubov puts:

I A~•xF)+I A=(] .
(15) A(xIF1) = A(1°(xIF1) + - A"',(xIF1) + A "(XIF)+

C V

and

(16) F. = l.,°(x' .x.IF,) + I ,l"(xl.. .x171) + ...
V

Note that the dimensionless parameter in (15) and (16) will of course
be of order r3/v = ron = r,/A since A - l/nrg. Hence just as in the
hydrodynamical stage, the development parameter can be looked upon
as the ratio r/to of the two relaxation times in question. However in
practice it is easier to use I/v.

(c) The reason that in the kinetic stage F1 is the basic "secular"
variable which governs the temporal development, is because of the
fact that the intermolecular forces do not affect F, directly. Only for
s >_ 2 does the streaming term XF, contain the intermolecular force
so that F, (s a 2) will change quickly in a time of order r- while the F1
will stay constant. In the same sense therefore as in the hydro-
dynamical stage and in the time scale to the macroscopic quantities
p, u and T could be considered constants of the motion, so in the
kinetic stage and in the time scale r the F, can be considered to be a
constant of the motion.

(d) The connection with the general Boltzmann-Gibbs picture of
the approach to equilibrium is I think clear. The contraction is
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similar to the description through the "macroscopic" variables
YiY2, ,.. except that again the choice of F, is determined by the
system and not by a macroscopic observer, and that one obtains at
the same time a closed deterministic description through the kinetic
equation (13).

Of course, all this is a program. We will now proceed to work it
out, and then you will see also some of the difficulties.

4. Determination of the functionals F,('). Substituting the virial expan-
sion (16) for s = 2 in the first equation of the BBGKY hierarchy (10)
one obtains:

O-F, + . = El. (dx e 0 
)(X1, x 2 1F1 )

TT m cr1  i'J 2 E1

+ - fdX2 O 1 2 1)(x 1 , x 2 1F I ) +

Hence comparing with the kinetic equation (13) and using the virial
expansion (15) for A(xIF,), one gets:

(17a) A(0)(x IF1 ) = - = - AF1,

(I7b) A'1 '(xIF1 ) = fdx 2 81 2 F1AP(xl, x2 1F,)

and in general:

(17c) A")(x 1jF1 ) = fdx.j 19 2F('- 1 )(x1 , X2 1F)

Since for s > 2, F, depends on time only through its functional depen-
dence upon F1 , its time derivative can be expressed in terms of F,
through the kinetic equation (13). Indeed, for any functional
0(x 1 , X2... IFJ) which depends on time only through F1, a#/at can be
expressed as a new functional of F1 by forming the formal derivative of
ý with respect to t and then replacing OF,/&t by A(xlFi) wherever it
occurs in the resulting functional. If in addition we introduce the
virial expansion (15) for A(x IF,), it is clear that one can write:

(18) ý 0(X, X2""..F0) = D10+ I "• o

where the formal operator D") consists in forming the derivative of 0
with respect to t and then replacing OF1 /8r wherever it occurs by
A(')(xIFi). Of course, the argument x of A" 1(xIF1 ) must be taken as
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the argument of OF1 /8t as it occurs in the differentiation process.
Hence, substituting the virial expansion (16) for F. into the hierarchy
(10) for s > 2 and equating equal powers of I/v one gets:

(19a) D'°)F•°) + g1 F1 °' = 0

and for Il 1:
(19b) D),°(F)I + ,F, - D(FI- + fdx,, 9S+ -+1

These equations together with (17) are functional equations for F,()
assuming that F, is a given function, which is in principle arbitrary.
Presumably (19a) will determine F.(0 ) and therefore especially F2°),
which then according to (17b) enables one to find A"). This in turn
allows one to find D(I)F,°0 1 and then (19b) for I = I will give F,(1 )
which leads to A (2, and so on.

We now have to discuss in which sense the functional equations (19)
determine the functionals F,"'. We will assume therefore that the
right-hand sides of the equations (19) are known functionals of F, and
we will try to fin(; F.").

The trick Bogoliubov uses to solve a functional equation of the
form:

(20) D'°'F,"' + X,.F." = 01.)(xl ... x. IFj)

where OV) is a known functional of F1, is the replacement of the formal
operator D(1) by an ordinary derivative with respect to an auxiliary
time variable 7. To explain this, we introduce the k-particle streaming
operator:

(21) S(xl .. Xk, T) = eXP{('rk(XI... Xk)}.

It is the time displacement operator over the time r due to the
streaming of the k particles in their 6k-dimensional phase space under
the influence of their mutual interactions. If (ri, p) is the phase of
the ith particle, then in the motion of the k particles the phase of
particle i a time r later is Sk(r)rl, Sk(7)p,, which is a function of the
phases xl... xk of all k particles, although usually we will not put
this in evidence. If x(xi... Xk) is an arbitrary function of the phases
of the k particles then:

(22) Sk(7)X(xl " xk) = x(Sk(')Xl, Sk(')X2 " . Sk(r)xk),

Clearly the Sk(") form an additive Abelian one parameter group of
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operators; Sk(r.) Sk'2)= Sk(rl + 72); Sk( - 7) is the inverse of
Sk(') and Sk(O) = 1. Especially:

(23) S,()x(x, 1) = e' 1x(x, t) x(r + k7,, p,

To replace the formal operator D"0 ' by an ordinary derivative we first
note that:

" Sl(-r)F1(x, 0) = Xle'•, = XISI(r)F,
(24) = _ A(°'(xjS,(r)F,)

using the expression (17a) for A'"). Hence from the definition of the
operator D10 1 it follows that:

(25) Do0 ,,.1F1(x• . xiS1(r)F1 )= - ." F"(x ... x,1S,(,j)F1 ).

Since the function FO(x, 0) in (20) is arbitrary, we can replace it by
Sl(r)F, and using (25) it follows that (20) is equivalent to the differ-
ential equation:

e•F .( x U , . . .x , lS j( i)F j) _ t j ') • (X I . .. X. x S I ( 7)F I)

(26) = -,#V(xl ... x, IS (.r)Fi).

So far nothing has been assumed; one has only transformed (20) into
(26) because it is simpler to treat ordinary differential equations than
functional differential equations. However in the form (26) one sees
that more information is needed to find the ,". Clearly some sort
of initial or boundary condition is required. Bogoliubov assumes that
for any of the functionals F, for s Ž_ 2:

(27) Lir S,(-7)F.(x .... ,jS,(r)F1 ) = Lim S,(-7) fl Sj(r)F1 (x,, t).

The basic nature of this assumption should be emphasized. What it
means is most easily seen by considering the spatial uniform case,
since then (see Eq. (23)) the SdIa) operator can be omitted and (27)
becomes:

Lir S,(- 7)F, = Lim S,(-7) [j F1(p,, I).

We can say therefore that if one traces the s particles back in the past
where they will be far apart from each other because of the repulsive
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forces, we assume that their momenta are uncorrelated so that the F.
is a product of F1 's. This is not obvious! One might for example
just as well think that the same type of independence would hold for
the future, that is for 7 -, - o. We shall soon see that this is not
acceptable since it would lead to a Boltzmann equation for which the
direct and restituting collisions are interchanged so that the H-function
would increase instead of decrease. It is the boundary condition (27)
which selects the appropriate irreversible solutions of the BBGKY
hierarchy (10) of the form (13) and (14). The reason why such a
condition is necessary while in the corresponding Chapman-Enskog
development there was no need for an analogous condition, is, I think,
because the Boltzmann equation is already irreversible while for the
Liouville equation (and therefore for the hierarchy) one must choose
the direction of time for which the continuing phase mixing takes
place.'

Accepting the boundary condition (27), let us see how the functionals
F."' can then be determined. First of all from the virial expansion
(16) of the F, it follows that (27) implies:

'a) Lim S,(-,r)F0 '(x 1 .. •x, S1(,)F,)

(28) = Lim S,(- 7) S1(i)F1(x,, t),

N Lim S,(-W)T"lx1 ,... .JS,(riF 1) = 0 (1 # 0).

Start from (26) and take first I = 0, in which case the right-hand side
#(°) = 0 (see Eq. (19a)). The "solution" of (26) is then:

F.(I(x,' ... x,IS 1(,j)F1) = S,(r)F:0°(x,... xI F,).

Or:

F.°'(0 , ••x,IF,) = S,(-,)F °'0 )(x,.. .x,lS 1(,r)F 1).

The left-hand side is independent of r, so one can go to the limit
-r -- (x and from the boundary condition (28a) one then finds:

(29) F,°0 (x. .x, xF0) = Lim S,(-7) 11 S,(r)F,(xi, t).

To find F,") for I > 0 from Eq. (26) one argues in the same way.
From the general formal "solution" of (26) one gets:

F'(x, I .. x.I F1) = S.(- r)F,1"(x 1 ... x.IS1(w)F1)

+ f" du, S,( - 7,1)0((xI .• xlS1(?1)F1)
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and by applying the boundary condition (28b) for? -- o one sees that
the first term on the right-hand side is zero, so that:

(30) F,"1(x,... x.,IF) = ED dr, S.(-,,)W.,(x,..

Using (29) and (30) the functionals F,') can be determined successively
from the basic equation (19).

5. The kinetic equatioa. Let us now write out according to our
recipe the first few terms in the kinetic equation. To simplify the
formula, let me introduce the abbreviation:

(31) .f,(x1 .. x,) = Lim S(x 1 . .x,, -v) S1 (x,, 7)

since this combination of streaming operators occurs all the time.
From (29) one gets:

F2°1(xIx 21F1 ) = .g'2(x 1x2)F1(x1 , t)FA(x2, t).

Hence substituting in (17b), one can write:

(32) A(xuIF) = fdx2 '912YV' 2 F1(x1 , t)F 1(x2, 0)
(32)

= ff 4 1 4 2 F1(41. i)FA(2, 0)Q2(X1IC1, W2

with

(33) -Q2(XIC1, 2) = f dx2 292.12' 2(x1 , x2 )8(xl - W)8(x 2 - ,2).

Here C a (4j, wi,) corresponding to x,- (r,, p). Clearly the two
lines in (32) are equivalent with the definition (33) for 02. The
reason for writing A")• in the form (32) is in order to separate the
dependence on the distribution F, from the mechanics of the binary
interaction which is embodied in the function Q2.

Turning now to A,421(xIIF,), we have first to find F2(1, which means
according to (30) that we have to determine #('). From (29) and the
definition of the operator D"'), one gets, using the first line of (32)
for A '':

D'''F2(0°(xI, X21 FI) = .'1'2jFj(xj, t)A"'(x 21FO + A111(xIF1)Fx(x 2, M)}

= ./'2(1, 2) dxC3 1193/'2(0, 3) + O2 3*/'2 (2, 3))1 F,(x,, t)
ifl
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where we have omitted the x's in the arguments of the streaming
operators and only indicated the particles involved. Next according
to (19b) we need F10) which according to (29) is given by:

3

F•°'(x,, x2, x3 1F,) = .Y(1, 2, 3) H F,(x,, t).
i-1

Altogether one gets:

012(x 1-, x21F1 ) = dx3 R13 + 923)'Y'3(0, 2, 3)
(34) 

3

- .3(I. 2){491.W2(I, 3) + 0a3'9"2(2, 3))] 7 FI(x,, t).
t-1

Putting this in (30) (taking I = I, s = 2) gives FP2(x 1 , x 21F1 ) and from
(17) one then finds A(21. Note that 0,," and therefore also F21) is
symmetric in x, x2. Separating as in (32) the distribution functions
F, from the dynamics of the triple interactions, one can finall, write:

3

(35) A121(x, IF,) -- de, d4 3 1 F1(C1 W114(,xu 2, W3)fff t-1

with:

(36) 3(XI 1 , C21 3)3f fo" f= fdx2 0,2 dr S2(I, 2, -r) fdx3 [1 ].I S,(x1,,?)8(x, - •)
1=1

where [ ] stands for the expression in square brackets in Eq. (34).
1 think this shows sufficiently how the successive approximation

method works, and how one can determine successively the functionals
F.") and A(k). Especially one will get for the kinetic equation:
i1F, +pj F, Iff lA fA Iý'W IG ,O I 2I.F1  . d . 2(x1IC1, C2)F'1(C, W)F 1(C2. I)

(37) + Al d, d4 2 d43 Q3(xIC1, C2. C3) I- F,(C,, 1) + ...

which shows explicitly the successive effects of the binary, ternary...
interactions.

I will now leave the formal machinery, and will try to discuss
whether the results make sense!

6. Discussion of the kinetic equation. There are a number of require-
ments which one would expect that the kinetic equation should fulfill.
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(a) In the first place one would expect that the first term on the
right-hand side of (37) is equivalent to the Boltzmann collision term.
I will now show, following Bogoliubov, that this is exactly the case for
spatially uniform systems.

PROOF. Since in the spatially uniform case F, depends only on
p and t one can omit in ./2 the S, operators, and since S2(- 7) acting
on pi or P2 only involves the relative coordinate r1 2 = r2 - ri, one
easily sees from the first line in (32) that A`' becomes:

(38) A()"(pjjF,) =f412 fdr, . ,2F1(Pd2, ,F,(P' 2, t,)

where:

r2) = Lim S2(x1. x2, -4)p, (i = 1, 2)

are the constant initial momenta in the binary collision governed by
the Hamiltonian H2 which leads to the phase xt, x 2 at time zero. The

I2) are functions of pi. P2 and r12. Since in terms of the momenta
r 2, the Hamiltonian

H2 = Ymm (p• + pI ) + 0,2 = ;I(P,2 )2 + (p2
2))2}

it follows that:

(39) {H2, F,(P1
2. t)F1 (P'22 ), t)) = 0.

This is clearly so if H 2 is expressed in the ,), but then it also must
be so if H 2 is expressed in the original variables xi, x2, since the
transition from x1, x 2 to the p12, is a contact transformation and the
Poisson bracket is invariant under such transformations. Written
out in the variables xi, x2, Eq. (39) implies:

0 1 2FW(P'12, I)FI(P''2 , ) = P2 - P, 2 F1 (P32 , /)Ft(P('2
2 , t).m •~1

Putting this in (38), and using in the r12-integral cylindrical coordinates
with the axis in the direction of the relative velocity g = (P2 - p)m,

Eq. (38) becomes:

(40) Al'"(plIF1 ) = dp2  , gb dbedf_ dl Fi(P?), t)FI(P2), t)

where I is the coordinate along the cylindrical axis and (b, e) are the
polar coordinates perpendicular to this axis. Clearly the /-integral
can be performed. Since at I co - the two particles are outside
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their action sphere and since the S2( - ) will never bring them to-
gether:

Lim P•2)=p. (i= 1,2).
I- - O

On the other hand for I -* + x, although the particles are then also
outside their range of interaction, the S2(x1 , x2, - 7) operation for
7 -- oo will certainly produce a collision and therefore:

Lim p 2 1=pp, (i-- 1,2)
1- + W

where the pi are the momenta of the restituting collision (pi, p2) -,

(PI, P2). Introducing again the differential cross-section I(g, 9) by:

b db d. = I(g, O) dQ

(40) becomes:

A" 1(p IF1 ) = f dP2 fdQg1(g, 0)[I,(pl, I)F,(p2. 1) - F1(p, ,F 1(p2, 01

which is the Boltzmann collision operator.
For systems which are not spatially uniform the proof breaks down

and in this case the Boltzmann form of the collision operator can only
be an approximation of the A"1 1(xIFI). In a sense this is satisfactory
since in the intuitive derivation of the Boltzmann equation it is clear
that some uniformity assumptions were really implied. For instance
the difference in position of the colliding particles was neglected and
it was assumed that the changes of F, in time due to the streaming
and due to the collisions are strictly additive and do not influence
each other. Clearly both these assumptions can only be valid if the
spatial variation of F, is small, and it is therefore satisfactory that the
Bogoliubov theory gives a more general form of the binary collision
operator.

(b) The collision terms A"), A'2)... must have the cluster-property,
which means that they must be zero if the particles do not- make a
binary, triple .. collision. For A"() this is obvious, because if the
two particles stay outside their action sphere then the operator 912

will make 92 and therefore A1̀ ) zero (see Eq. (33)). For AM2 ) it can
be verified as follows. From Eq. (36) for -Q3 one sees that the inte-
grand of the x2-integral will vanish if Jr 2 - ril > ro because of the
912 operator. Consequently one needs to consider only those x2 for
which Ir2 - r,1 < ro. For this phase (x1, x2) the S2(0, 2, -r) opera-
tor separates the particles I and 2 by a distance r. in a time of the
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order of the collision time and from that time on the distance of the
particles increases. Put:

2, = S2(l, 2, -,v)x,, (i = 1, 2)

and call 7' the time for which the distance Ir2 - r, has become larger
than 2ro. The operator occurring in the v-integral in (36) can now
be written as:

f dx3 [{101, X3) + 123(Q2, X3)}.)' 3(91 , 92, X3)

(41)
- .5 2(Q1, 92 ){ 0

1 3(-tl, x3 ).¶/'2(21, x3) + 023Q21 x 3)9 2(2 2, x3)}].

For 7 > 7', 012(2•, )?2) = 0 and for fixed x 3 either 913(01, x3) or
923(R2, x3) must be zero, since R1 and 92 are separated by a distance
bigger than 2r0. Suppose 813(91, x3) = 0, but 023(92, x 3) 6 0.
From the definition of .93, and since for this configuration X 3 =
X 2(72, x3) + "(x 1), it is clear that one then has:

Y013(21, g 2, x3) = ./ 2(! 2. x 3)

and since in this case .Y0'(1, -i2) = I one sees that the operator (41)
goes to zero. This is also the case if 602 0 2, x3 ) = 0 but 13(.01, x 3) :0 0
by a similar argument, and hence one can conclude that Q 3 is only
different from zero if for a time of the order of the collision time the
three particles are in a connected configuration.

It would be very valuable if one could further "understand" the
expression for 'Q3, in the same way as one "understands" the Boltz-
mann form of the binary collision operator. For instance one might
hope that in the spatially uniform case one could transform A3 in a
similar way as Q2, so that one would see that . 3 depends only on the
momenta of the three particles before and after the triple collision.
We have not succeeded in doing this and I doubt whether it is possible.
However, I still think that it should be possible to see so clearly through
the structure of the successive collision kernels .?2, -3 ... that one
could imagine that with enough insight one would have written them
down intuitively just as Boltzmann wrote down his collision term.

(c) One should expect that the kinetic equation will lead to the
state of thermodynamic equilibrium and that then F1 and all the
higher distribution functions will agree with the results obtained from
the canonical ensemble. It is rather easy to verify that if one takes
for F, the Maxwell distribution:

(42) Feq(x) = (21rmkT)- 312 e- p2 2mkT
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all the functionals A")(xjFjq) vanish and that then the functionals
F,(xl... xFl") become the successive terms in the virial expansion
of the s-particle equilibrium distribution functions. The simplest is
to prove this successively and after a few orders it will then be clear
how it goes on.

In zeroth order with (42) A101 is obviously zero and since Ffq is
spatially uniform one obtains from Eq. (29):

F.°)(x,. x. Ix lF0) = (2,rmkT)-- h2exp{ 2 , k

where:
I') = Lim S.(-7)p,

are the momenta of the s particles before the s-tuple collision. Since
the Hamiltonian for the s particles can be written as:

Hs = + . = (

one can also write:

(43) F(,°'(x, •. .IFj'q) = (21rmk T)- 3'12 e- H. kT

which is the expected form for the s-particle distribution function at
very low density.

In first order one obtains from (43) and (17b):

A (1(x, IF'lq) (21rmkT) -I fdX2 192 exp( pA + P22 0_12a•
fk ( 2mkT UkT)

Introducing the relative coordinate r = r 2 - r, the space part of the
x2-integral will be:

f rL - #kTOre

which is clearly zero. Hence A(1)(xjFj1 q) = 0 as follows of course
also from the Boltzmann form for A"). Since A") = 0, D(1 )F,°0 ) = 0,
and since from (19b) and the definition of 0,•') in (20), restricting
ourselves to the case s = 2, one has:

OI(x 1 , x2IF,) = -D("'FJ° + fdx3(013 + 023)F•0 )
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one obtains from (30) and (43):

(44) FN1)(xI, x21FIq) = (2wmkT)-s' 2 f dr S2(, 2, -,r)

x dx3 (913 + 9 23 ) e"-'3kT.f

From {H3 , exp( - H3 /k T)) = 0 follows:
E. P2 D e, 2 e-HakT + e - U.

(M13  W1 )W-"S2 m )m M mWa3

Introducing this in (44) the last term clearly integrates to zero. Since:

S 2(l, 2, -7) E a +P2 m _-- 12

= S2(l, 2, -7))r 2

= X.SA(l, 2, -) - S 2(, 2, -)

the T-integral in (44) gives:

PI - S2(, 2, - oo)]e- H3k T .

Writing H, = H2 + p3/2m + 01, + #23 and integrating over P3 , one
gets:

F2"'(x,, X21F~q)

= (2vmkT)[- '[ - S2(0, 2, - 00)]e-H2'kT. fdr3 e-(03+a IkT.

Introducing the Mayer function f, = exp(-0j,/kT) - I, one can
write:

f d,3eXp[-(0,3 + 23)IkT] = fdr3 (fia.f 2 3 +Af3 +f23 + 1).

The last three terms are constants, independent of (xI, x2 ), so that
[I - S2(0, 2, - cc)) acting on them will give zero. The first term is a
function of Ir2 - r,1, which is zero if jr 2 - r,1 > 2ro, so that:

S2(l, 2, -c) fcl.f,3.f = 0.

One obtains therefore:

F2"(x1 , x2 lFtX ) = (2vmkT)- 3 
e- H2kT f dr3af 3f2a

F21°)(x,, X21F1*q) f dr•.fl3f23
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which is the familiar expression as derived from the canonical distribu-
tion." By the same argument as used for Al'1 it follows from (45)
and (17c) that A' 2)(xaIFP) = 0, and so on!

(d) We have shown therefore that the equilibrium distributions
are solutions of the Bogoliubov equations. Are these solutions always
reached in time? Or in other words, can one generalize Boltzmann's
H-theorem? Unfortunately there is here a gap in the theory. So far
we have been unable to do this. I feel sure that it must be possible
but one is hampered by the lack of insight in the structure of the
successive collision kernels so that it is difficult to see how one should
generalize the argument of Boltzmann.

7. Remarks on the theory of the hydrodynamical stage. It would take
much too long to explain in detail the further work of Dr. S. T. Choh
on the generalization of the Chapman-Enskog development to the
kinetic equation of Bogoliubov. Let me therefore only point out
what is involved and indicate how far the theory has progressed.

The first step is again the derivation of the general macroscopic
equations. Since these equations are exact consequences of the
BBGKY hierarchy, and since it may be useful to have them somewhere
together I will still write them out in detail, and to facilitate the com-
parison with the analogous development in §2 of Chapter V! I will
use in parallel with F,, F2, ..- the distribution functions f,(r, v, t),
f 2(r1, r2, v,, v2, 1) in the velocities instead of in the momenta. The
connection between them is given by:

Nf,(r, v, t) dv = P F0, p. t) dp,

( (r4, r 2, V , , V ) d v 1 d v 2 = N ( N - I) F 2(r) , r P 1, P 2 , 1) 4 11  d P 2
rf (r(r r r , P , P ,)t) dpd dp=

and so on.
The macroscopic quantities, which describe the macroscopic state

of the gas, are:
(a) the mass density p = nm, where:

n(r, 1) = f dvrf,(r, v, t);

(b) the average flow velocity u(r, t), defined by:

nul(r, 1) = fdv vf[(r, v, t):
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(c) the internal energy density e(r, t), which consists of two parts:

(47) t(r, t) - ek'n(r, t) + ei`t(r, t)

where:

(47a) = m f dv U2fl(r, v, t)

with U, = v, - u, = thermal velocity (note that Ekta was called Q in
Chapter VI), and where:

(47b) =pot __ f dv fdvr fdr1,4(Ir - r1 l)f2(r, r1, v, vi, t).

In terms of these five quantities one obtains from the BBGKY
hierarchy the macroscopic equations in exactly the same form as in
Chapter VI, namely:

(a) e+ (pUa) 0,

(48) (b) Du, O pt,.

(c) P + = - PaD.,

with:

D e, i 'U u)Tt = Ft + UT-.

However now the pressure tensor Ptj and the heat current density qi
consist just as the energy density - out of two parts, a kinetic part
and a part which depends on the intermolecular potential #. One
finds:

(49) P 1, = " + Pr t

where P,'" is defined just as in Chapter VI by:

(49a) Pt"(r, t) = m fdv UUJf1 (r, v, t)

and where:
If pep, d# P•

(49b) PI t(r, V ) = - dp dP'' d• J dA n2 (r1 , r., t).
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SHere n2(r1, r2, 0) is the pair density distribution defined by:

• (50) n2(rf, r2, t) dv1 dv2f 2(r1 , r2, V1, v2, t)

and the positions r, r2 are related to r, and the relative coordinate
p - r2 - r, by:

(51) r, = r + (A p)e, r2 = r + .
p p

Finally one has:

(52) q,= qd + qr"

where again q'1 is defined just as in Chapter VI by:,I
(52a) qk'n(r, t) = m f dv U, U 2f,(r, v. t)

and where:

qrO(rt) f dri. dv dvf U1,.(Ir - r,1 )f 2(r, r1 . v, vit)

+ Ib dp 1 L f- dAff d,1 d 2(Ul.. + U2.Jf 2(r 1 , r2, v,, V, 0).

4 Jfp 2 dp Jo J

In the second line the positions r,, r2 are again expressed in r and p
by (51), and

U, = - u, (i = 1,2).

In note 5 we indicate some of the rather straightforward manipulations
required to derive (48) from the BBGKY equations. It is also not
difficult to give a physical interpretation of the potential energy parts
in P,, and q,, but we will leave this to the reader.

One now has to use the expressions the Bogoliubov theory gives for
the second distribution function F2 in terms of Fi, and then just as in
Eq. (21) of Chapter VI one must develop F, in an uniformity para-
meter 0, postulating at the same time hydrodynamical equations of
the form:

bn
Ft = ON " t) + O2N '2 . .

(53) OU_ = oV,1 + 02V,(2) +

at

T = OEV) + 02E'21 +...
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where the N"11, V11 and El'• are functions of the position r and depend
on the time only through their functional dependence on the macro-
scopic variables n, u and e.

Unfortunately the formulas become rather involved, and for all
details I have to refer to the dissertation of Dr. S. T. Choh. In con-
clusion let me therefore only state what Dr. Choh has been able to
show.

I. In first order of 0 one gets the ideal or Euler hydrodynamical
equations, in which the pressure p as function of T and p is given by
the usual (equilibrium) virial expansion and where the internal energy
z is given by the corresponding thermal equation of state.

2. In second order of 0 one gets the Navier-Stokes equations, or
in other words one obtains Fourier's law of heat conduction:

OTq, = -- K Tx-1

and Newton's law of internal friction:

Ply= p•, - 2, 1(D,, - I 8j 1Da) -

which now involves two viscosity coefficients.
3. For the transport coefficients gA, JA2 and K one gets virial expan-

sions of the expected form (2), but unfortunately the actual values of
the expansion coefficients depend on the solution of inhomogeneous
integral equations of the same form as occur in the Chapman-Enskog
theory but much more complicated since the inhomogeneous part now
involves the three particle streaming operator. One can show that
these equations have an unique solution, but to find the solution even
for special intermolecular potentials (like the elastic sphere or the
Maxwell model) seems very complicated, so that no numerical results
have been obtained so far.



NOTES ON CHAPTER VII

1. The work of N. N. Bogoliubov was published in his book:
Problemy Dinamicheskoi Teorii v Statisticheskoi Fisike (Moscow,
1946). An excerpt in English appeared in J. Phys. (U.S.S.R.) 10
(1946) 265, and a complete translation (by E. K. Gora) appears in
the first volume of the "Studies in Statistical Mechanics" (North
Holland Publishing Co., Amsterdam, 1962). A short account of the
theory was presented by one of us at the Boulder Summer Seminar in
1957 and this was published as Appendix I in the book by M. Kac
(Probability and Related Topics in the Physical Sciences, Interscience,
New York, 1958). Further consequences of the Bogoliubov theory
have been worked out in the University of Michigan dissertations of
S. T. Choh (The Kinetic Theory of Phenomena in Dense Gases, 1958)
and of R. L. Guernsey (The Kinetic Theory of Fully Ionized Gases,
1960). In the text we follow mainly the exposition by S. T. Choh.

The work of J. G. Kirkwood has appeared in a series of papers in
J. Chem. Phys. See especially: J. Chem. Phys. 14 (1946) 180 and 15
(1947) 72. Compare also the account given by J. G. Kirkwood and
J. Ross in the Proceedings of the International Symposium on Trans-
port Processes in Statistical Mechanics (lnterscience, New York, 1958).
In these proceedings one also finds a paper by M. S. Green, which is a
summary of his article in the J. Chem. Phys. 25 (1956) 836. More
recent work of the same author appeared in Physica 24 (1958) 393 and
in Vol. III of the 1960 Boulder Lectures in Theoretical Physics (Inter-
science, New York, 1961).

The work of Prigogine and co-workers appeared in a series of
papers in Physica since 1956. Some of the recent ones are by I.
Prigogine and R. Balescu, Physica 25 (1959) 281, 302, 324; 26 (1960)
145, 529. Compare also the application to the kinetic theory of
plasmas by R. Balescu (Phys. Fluids 3 (1960) 52).

A useful comparison of the different methods of deriving the
Boltzmann equation has been made by E. G. D. Cohen (Physica 27
(1961) 163). In here one finds also further references.

Finally one should point out that thefirst attempt of a kinetic theory
of dense gases was made by D. Enskog (Kungl. Svenska Vet. Akad.
Handl. 63, No. 4 (1921); see also Chapman and Cowling, Mathematical

139
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Theory of Non-uniform Gases, Chapter 16). Enskog always used the
hard sphere model and he started from the Boltzmann equation in
which the collision term was modified by taking into account the
difference of position of the two colliding molecules at the moment of
impact and by assuming that the influence of the other molecules can
be accounted for by changing the collision probability by a factor

(a) x= 5b

where b is the van der Waals' b, which insures that in equilibrium the
equation of state is correct up to and including the third virial co-
efficient. To this modified Boltzmann equation the Chapman-
Enskog development can be applied and this leads to a virial expansion
of the transport coefficients of the form (2). In fact one finds:

_ + 7b
,0 +"40 +

(b)
K = 23 b+..

+~ - +
K0  

40 V

The Enskog theory has been discussed by many authors; see for
instance: H. B. Hollinger and C. F. Curtiss, J. Chem. Phys. 33 (1960)
1386 and J. V. Sengers and E. G. D. Cohen, Physica 27 (1961) 230,
where one finds also further references. There is no doubt that the
Enskog theory explains at least qualitatively what happens at higher
densities. However, because of the lack of a systematic procedure
and especially because of the uncertain validity of the Ansatz (a), it is
at present not known whether the numerical coefficients in the virial
expansions (b) are correct.

2. For the derivations by Bogoliubov and by Kirkwood see the
references in Note I. The work of M. Born and H. S. Green appeared
in a series of papers in the Proceedings of the Royal Society. They are
collected in a book called A General Kinetic Theory of Fluids (Cam-
bridge University Press, Cambridge, 1949). For the work of J. Yvon
see his monograph La Theorie Statistiques des Fluids in the Actualit~s
Scientifiques et Industrielles (Hermann, Paris, no. 203, 1935).

3. The fact that the application of a boundary condition like (26)
but for r -* - co leads to the wrong sign in the collision term of the
Boltzmann equation, was pointed out by E. G. D. Cohen and T. H.
Berlin (Physica 26 (1960) 717). In this paper and also in the article
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by E. G. D. Cohen (Physica 27 (1961) 163) it was pointed out that in
all derivations of the Boltzmann equation from the Liouville equation
a similar choice of the appropriate solution is made.

Clearly a further clarification of the role of the boundary condition
(26) can come about only when one sees in which way the solution of
the initial value problem for the Liouville equation reaches the form
(14) postulated by Bogoliubov. We hope and we expect that this
insight will come from the work of M. S. Green.

4. See J. E. Mayer and E. Montroll, J. Chem. Phys. 9 (1941) 2,
where one finds the general expressions for the F,')(xl... x,IFt").
For a discussion of the virial expansion of the s-particle distribution
function with the help of the theory of linear graphs as in Chapter II
see the review article of the authors quoted in Note 6 of Chapter II.

5. We will follow essentially the work of J. H. Irving and J. G.
Kirkwood, J. Chem. Phys. 18 (1950) 817. The method is completely
analogous to the method used in Chapter VI to derive the macro-
scopic equations from the Boltzmann equation.

Start from the first equation (I la) of the BBGKY hierarchy.
Integrating over Pi leads immediately to the continuity equation (48a)
since the right-hand side vanishes. Multiplying (I la) by p1/m and
integrating over pl, one obtains after some simple transformations:

(c) p "-Dui -x drJdv dv 1dirr-- )f2(r, r,, V, V1, t)

where we have changed to velocity variables and the distribution f2
according to (46). The question remains to show that the last term
in (c) can be written as the divergence of the second part Pf' of the
pressure tensor. The simplest way is to verify. From (49b) one gets:

- f2 dp P f dA n2(r1, r2, 0).

Since n2 is a function of r + Ap/p and p (see Eq. (51) defining r, and
r2), it is clear that:

OA PO x.

Hence:
- 2dp' d {n 2(r, r + p, t) - n2(r - P, r, t)).
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Changing in the second term the direction of p, and using the sym-
metry of n2 in the position variables, one gets:

"•pr. f dpL,do n2(r, r + p, )
Ox. - p dp- P ,

and this is identical with the last term in (c) if there one puts r, =
r + p.

To derive the energy equation (48c) one multiplies (I la) by p'/2m
and integrates over pl. Using (48b) one then obtains:

) + +k-- = -Pa#Do +a (u0P:

(d ) - r d r , T x

d r - ri)Af2(r, r1, v, v1, t).

To obtain the transport equation of the potential energy density we
have to use the second equation (I1 b) of the BBGKY hierarchy. By
multiplying (I Ib) with 0( ]r, - r 2 /)/2 and by integrating over r2, pi
and P2 one obtains after some rearrangements and renamings and after
changing to velocity variables:

D ( + =t--)

(e) 0 r - if -2! fd, ffdvd,,(,o- ,) °)#( Ir - r ,l)f( r,, v, v,, t)

where q01 ' is the first part of the potential energy part of the heat
current density given by the first line in Eq. (52b). Adding equations
(d) and (e), and using the expression (49b) for Pt1, one gets:

p D (•) + jq k +q•,,,,)= _paDaR

fdr, ffdv d., r-1) (U. + U1.)f 2(r, r1, v, vj, t).

Finally it is easy to verify that the last term is the divergence of the
second part of qI,*' given by the second line in Eq. (52b), which con-
cludes the proof of the energy equation.



APPENDIX

Quantum Statistics of Interacting
Particles

By ELLIorr W. MONTROLL

I. The plrtition functio. As was pointed out in the lectures of
Professor Uhlenbeck, the calculation of thermodynamic properties of
an assembly of particles can be accomplished by performing appro-
priate elementary operations (taking logarithms, differentiation, etc.)
on the partition function. In the case of an assembly whose dynamics
is described by the laws of quantum mechanics, this function is

(I) Z= exp- PE,
j

where the set {E,) is the set of all energy levels of the assembly; i.e.
the set of characteristic values of the Schrddinger equation

(2) H#, = Eo,,

the H being the Hamiltonian operator of the assembly and the Oy's
the wave functions or characteristic functions of H. The parameter
P is I/ iT, T being the temperature of the assembly and k Boltzmann's
constant.

Clearly, if one can solve the Schr6dinger equation for the assembly
of interest, the calculation of Z is trivial. Generally, 0 is a function
of 3N (with N = 0 (1023) being the number of particles in our assembly)
variables, say the position vectors of the particles in the assembly, and
H is an operator which depends on the same variables. If one
postulates additivity of intermolecular forces, then

(3a) H = I " + I I rjk)
2 I1 k>J I-=

where
a2 jý2 e2

(3b)4 XI y12yj+ T
143
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and 0(r") is the potential energy of interaction between the ith and
jth particles when they are separated by a distance r". The only
interesting case of interacting particles for which the Schrbdinger
equation has been solved exactly is that of coupled harmonic oscillators
(crystals undergoing small vibrations). For all other significant
examples, approximations must be made. My lectures are concerned
with the systematic application of perturbation theory to the problem
of the calculation of the partition function. Although a considerable
part of the discussion will be quite general, the example which I hope
to analyze in some detail is that of the gas of ionized particles. In
that case 0 represents the coulomb interaction

eije

(4) 4(rI') =

ej being the charge on the jth particle.
The methods presented in the lectures are those developed by J. C.

Ward and myself. They are closely connected with those developed
independently by Matsubara; Huang, Lee, and Yang; Bloch and
DiDominicis; Gell-Mann and Brueckner; Goldstone, and other
authors. The characteristic feature of all this work is that perturba-
tion theory is developed in a systematic way and that diagrams are
used extensively. These techniques were inspired by the celebrated
paper of Feynman on the theory of electrons and positrons. As the
development proceeds, I suspect that occasionally you mathematicians
will be amused by the methods, but probably the recklessness of the
approach will more often give you a feeling of uneasiness. A proper
mathematical investigation of the expansion of the partition function
into a series of divergent cluster integrals and their recollection into
convergent expressions would be most welcome.

Actually, Martin and Schwinger, Fradkin, Siegert and others have
discussed the partition function by nonperturbative techniques but
these lead to the necessity of making other types of approximation.
Their approach will not be discussed here but it might be of interest
to some of you.

The partition function (I) can be written in an alternative form in
terms of the characteristic functions {#,} of (2). Each € depends on
the schematic variable
(5) r {r 1, r 2, r..,rN}.

Then

(6) Z J .f. f 4)0*(r)O)(r)e-"i d3Nr = trace exp - PH.



THE PARTITION FUNCTION 145

Note that the operator exp -PH plays a decisive role in equilibrium
statistical mechanics while exp itHN/ is the operator from which
dynamics can be developed. That is, the real part of the complex
variable P + ith-i is associated with thermodynamics and the imagin-
ary part with dynamics while both the real and imaginary parts find
their place in the statistical mechanics of nonequilibrium processes.
We start our development with an analyses of Boltzmann statistics.
In the case of fermions or bosons the summation over j in (6) and (7)
is taken over only antisymmetric or symmetric #'s.

We define what is technically known as a "propagator"- by

K(2, 1) _=K(r2fi2; r1fli) = ~feAD)s~~l.j 2) if P2 ?- P1

(7) 0 ifP2i < P1

= 00(f2 - 9i1) • e-(0a - 0 d10, *(rj)0Ar2 )

O(x) being the Heaviside step function

(8) O(x) = Iif X < 0

(9) dO/dx = 8(x).

The partition function is then

(10) Z= fr... f Krfl; rO)d 3 r.
J V

Although the case #2 < P, does not appear directly in this formula,
the setting of K - 0 under this condition will be convenient in the
perturbation theory of the calculation of Z since certain restricted
integrations over P's will be replaced by unrestricted ones. Actually,
an extra factor I/N! should be introduced into (10) because in inte-
grating freely over the r's, many sets of possible positions differ from
each other only through a permutation of particles so that they are
overcounted by a factor N!. In §§ I and 2 lower indices on r's
identify the value of P with which the r is associated; i.e. r2 is the
r value (Eq. 5) at fl. The upper indices denote particle numbers.

Since

(II) 0'*(r)0#,(r2) = 8(r2 - ri),

(12) H(2),,(r2) = E,0#,(r 2), and i)8(x)/1)x = 8(x)
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where H(2) is the Hamiltonian operator in terms of the variables

(13) r2 = {ri, r2,. •., r'},

we have

(14) + H(2) K(2, I) = S(2 - Pi)8(r2 - r,).

This equation is just the Green's function form of the Schr6dinger
equation with P replaced by it/h. The .homogeneous form of this
equation is often called the Bloch equation. The propagator is a
Green's function.

In the case of free particles, the Hamiltonian is

(15) HO(2) h-2 V2/2m

and (14) is just the point source diffusion equation for N independent
particles with a diffusion constant D = h2/2m. In all cases

N
Wr2 - r,) = II - r').

= 1

The free particle propagator, which is the solution of

(16) + +lo(2) Ko(2, I) = W(/i2 - PO) 8(r 2 - r,),

is then
N

(17) Ko(2, I) = OA - P,) F1 Ko1(2, I)
J-1

where K1(2, I) has two equivalent forms in the case of an unbounded
space

(18) Kol(2, I) = f exp ip'.(r' - r1)h(21rh)3 f2 1

2m- •2 d3p'

(19) _- exp - {m(r1 - rl)2/2h2( 2 -2 )

[2,rh'(P2 - Pl )/m]3/2

The form for K/1 in a finite cubic box of volume L3 = V with periodic
boundary conditions is
(20) V (

e(2pI)3 Lr/ (- )2
×exp [i(pý.rl - pIrA)/lh - Ap - ,XpJp/2M]
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(21) 2wnh(21) P='T'-h n = 0. , + ±,2,..

and 8,.P ,P is a Kronecker delta. As L - oo we write

(22) d3p = (21rh/L) 3

so that the summation becomes a double integral. The fact that

(23) 8(P2 - P1) lim Vh)3
v-. (2wrh)

implies that (20) reduces to (18) in the required limit.

2. Perturbation theory. With a knowledge of Ko, we are prepared
to give a systematic perturbation theory of K. Let

H1= Ho + H,

where H. is given by (15). Then the differential equation (14) is
equivalent to the integral equation

(24) K(2, 1) = Ko(2. 1) - f f Ko(2,3)H,(3)K(3. )d 3Nrd 3d.

This equivalence can be verified by applying the operator (/•'/ 2 + H(2))
to obtain (in view of (16) and (24))

T-4+ H(2) K(2, I) = I1,(2)Ko(2, 1) + W4,82 - /S) (r2 - ri)

-Hi(2)f f Ko(2, 3)H,(3)K(2, 1)d3 Nr 3

- fv f (4 - #3) (r2 - r3)

x HI(3)K(3, 1) d Nr3 dfA3

= Ht(2)Ko(2, 1) + 8(f• 2 - /%) 8(r2 - r1)

- H,(2)K(2, I) + H,(2)[K(2, 1) - Ko(2, I)]

= fl2 - 1) 8(r2 - ri)

as is required. Since both Ko(2, 1) and K(2, I) were defined to vanish
when fl < #,, the limits on (24) could just as well be written as going
from #I to / 2 so that (24) is equivalent to

(25) K(2, I) = Ko(2, 1) - f f 2 Ko(2, 3)H,(3)K(3, 1) d 3 r3 dl3 .
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This equation can be integrated to yield

(26) K(2, 1) = K0(2, I) - Jf Ko(2, 3)H,(3)K0(3, 1)dr3N r3 dA +
V 1

f fi' f, f~if X(2,3)H,(3)Ko(3, 4)ll,(4)Ko(4, I) dN r4dfl4 r 'r3 dfi . .

If H, is proportional to a coupling constant A, this expansion is a
power series in A and therefore a perturbation series. If we use the
explicit formula for H, given in (3a)

N N-1

(27) H,(3) = 0 Z,(rl, r')
k>1 1-1

and at first restrict ourselves to the case N = 3

H1(3) = 0(r. r ) + 0r' r') + Or. 2 )3 3 3 3 r3 r3•

then (26) becomes

(28) K(2, 1) = Ko(2, I) - f# 2 K0(2, 3)[r, 4r) + r, r2)

+ 34. r)JK0(3, 1) daNr dfl3  + (9 second order terms). -.

Each term in this expansion can be identified by a Feynman type
diagram in P, r space. The factor in Ko(2, I) which represents
particle "I - being propagated as a free particle from fl to / 2 (see
Eq. (19) for analytical form)

r rI r 2

3 3

Figure I

is represented by a line from level P, to level 2, while the interaction
#4r., r2) at 93 is represented by the horizontal line in Fig. I. The
zero order term has the diagram given in Fig. 2 while three parts
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contribute to the first order term. These are given in Fig. 3.

Figure 2

02

03-

(a) (b) (C)
Figure 3

Of the nine terms of second order, three are drawn in Fig. 4. These
are obtained by inserting one more interaction line at #4 with (94 < 9 3).

03-

04

(as) (a2) (a3)

Figure 4

Three more terms can be obtained from (b) in this way as can three
from (c). Higher order terms are obtained in a similar manner. It
is to be emphasized that all interaction lines are "isothermal," both
ends existing at the same temperature (P values).
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In the partition function we must set #1 = 0, 02 = P, r, = r= r
and integrate over r. Then

(29) Z = 1 {fv Ko(rP, rO) d 9r - fv fv d'r d'r 33!ff -r)o(Va r0+

SdP:Ko(r#, r3, P.) -0(r )K(r 3 3; rO) + .

All diagrams of the partition function extend over the 9 range (0, /)
and all diagrams start and end at the same r values. All points on
the strip in (fl, r) space which correspond to the range (0, P) can be
mapped on a cylinder of circumference /, and in view of the identity
of the r values at each end of the range all our particle lines form
closed curves on the cylinder. When periodic boundary conditions
are applied, the cylinder becomes a torus. We represent our diagrams
by the form they have on the cylinder. The free particles of Fig. 5
have the representation

0 0 0 : free particles.

Figure 5

The terms of first and second order in (29) correspond to the diagrams

an o + c + o Q.o : one interaction
COD 0 + CWO .-X-0 + 6 similar terms: two interactions

Note that in a term of (29) in which two particles are connected by
interaction lines and one remains free, the appropriate integral factors
into two parts, one a triple integral over the free particle position
coordinates and the other a six-fold integral over the position co-
ordinates of the interacting pair.

Generally, in the case of an assembly of N interacting particles,

(30) ZN fKo(rfl:rO) dNr - f fV d3Nrd2 r

x Ko(rfl:r3 93 ) (Ar3 - rl)Ko(r3Pj:rO) dA3 + . "
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A typical integral in the expansion might correspond to a diagram
with s1 free particles, s2 pairs of particles connected by interaction
lines, sa triples connected by interaction lines, etc. Then that integral
factors into s, factors of integrals of individual particle positions;
s 2 factors of integrals over positions of pairs of particles, etc. Of
course, any integral associated with a diagram which corresponds to I
connected particles appears as a factor in many terms in the expansion
of the partition function Z.

02

(al (b) (cl

Figure 6

Now let us consider the sum b, of all integrals which correspond to
diagrams of I particles connected by any number of interaction lines
n Ž= - I:

(31) b, = I I (integral associated with a diagram of I connected particles)

x (number of ways diagram can be constructed from I particles).

A remark or two is appropriate about the integrals. These were first
defined so that the interaction lines occur in an appropriate sequence
(32) 0 < 91 < 92 < ... flk < /3

In a very symmetric diagram such as that given in Fig. 6, one might
wish to integrate freely over all Pl's instead of adhering to the con-
ditions (32). Then he would have to divide by k! because an inter-
change of the #ik's does not change the character of the diagram.
These interchanges can be made in k! ways. Also consider the two
diagrams 6b and 6c. These would be recorded in b3 as a single diagram
because in the r and # integrations of Fig. 6b, one automatically
arrives at a diagram which is topologically also of the form of Fig. 6c.
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The quantity b, contains all possible connected diagrams with I
points, each diagram being given its appropriate weight. Some
examples are

bi = 0,

(33) b2 =• 0-0 + 020 + 12 +

21b3 =• 0- + 0 +...

There is a one-to-one correspondence between every term in (30)
and every term in

(34) ZN b=,11M/s1!.
List - N

The factor N!/s,!s 2 !.. is the number of Ways N particles can be
divided into subsets such that s, subsets contain one particle, s2 two
particles, etc. The summation in (34) extends over all partitions of
N such that

(34a) Is, = N.

The grand partition function of a grand canonical ensemble of
systems composed of any number of particles of our type of interest

(35) ZG = 2 :N.
N-I

This equation, when combined with (34) yields

(36) ZG = 1 . H (Z'b1 )",/I! = exp : blz'
N=1 ZList-N

so that

(37) log ZG = • bz:.

The logarithm of the grand partition function is then the sum over all
connected diagrams containing any number of particles; a factor z'
weights any diagram composed of I particles.

Let us now investigate the influence of quantum statistics on the
calculation of the b,'s. Quantum statistics is a consequence of the
indistinguishability of particles of the same species. Two diagrams
exist which correspond to a pair of particles starting at (r1, r2) and
ending at the same points. Both are exhibited in Fig. 7. An observer
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who makes observations at/3 = 0 and P cannot distinguish between
the two cases; both must be included in the evaluation of the partition
function.

When Fig. 7b is mapped on a cylinder in (r, P) space particle I ends
where 2 starts (Fig. 7d) and vice versa so that (7b) is equivalent to
a single particle which circulates around our (r, P) cylinder twice,
or in the case of periodic boundary conditions around our (r, 9) torus
twice. This discussion of indistinguishability can be generalized
immediately to sets of any number of particles. A set of n particles
such that I ends where 2 started, 2 ends where 3 started, , n ends

I 2 I 1 2 3 4 (n-) n

1 2 1 2 123401
r r r

(a) (b) (C)
Figure 7

Figure 7d Figure 7e

where I started (see Fig. 6c) maps on the (r, P) cylinder or torus as
one particle which circulates around n times, the total length of P
space spanned being n/l. We call such a construct an n-toron.
Should our narticles be fermit -s, a factor ( - I) must be included for
each particle interchange between P = 0 and P = P. This is a conse-
quence of the definition of the propagator K (see Eq. 7). In the case
of fermions the summation over wave functions 0, in (7) is restricted
to extend only over the antisymmetric wave functions of the operator
H. Hence the interchange in the position of two particle coordinates
in one of the 0,'s results in a change in sign. If at/P = /1 in Eq. (7)
the jth wave function is 0,j(r, r',.*) and if at # = 92 two r2 's are
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exchanged, the resulting 0#(r2) changes sign as does K(2, 1). Indeed
when (n - I) exchanges in sign occur as in Fig. 6c (an n-toron) one
must include a factor (- I )n - I = ( I )0l +I with the free particle
propagator. No ( - I) factors appear in assemblies of bosons because
in that case the summation in (7) extends only over symmetrical wave
functions 0,.

In the case of N free fermions a typical set of interchanges of initial
coordinates r, at P, to final coordinates r2 at #2 can be represented by
a diagram similar to that in Fig. 8. The set of all possible inter-

1 2 3 4 5 6 N-4 N-3 N-2 N-I N
r

Figure 8

changes (with appropriate signs) can be generated by the Nth order
determinant

I I
(38) K/,"(r 29 2. ri,) = .detN {Ko(r29 2 ; rfll)} - det (2, 1)

where the element in the jth row and kth column is just the free
particle propagator (19) which takes a particle from (rk, #Ir) to (r', P2)
(i.e. the function obtained by replacing r' in (19) by rk. This deter-
minant has the required antisymmetry with respect to the exchange
of two initial coordinates or two final coordinates since such an
exchange is equivalent to exchanging a pair of rows or columns in
the determinant. The symmetrical boson propagator is (N!)-'
multiplied by the permanent of Ko(r'ji.4,; rk/ 1).

The propagator of a set of N interacting fermions is obtained from
(26) by replacing Ko(2, I) by (I/N!) det (2, 1) and all the K0(2, 3) by
(I/N!) det (2, 3). The resulting fermion propagator

(39) K'(2, I) = . det (2, I) - f3 det (2, 3)H1(3)K 0(3, l)dr3 df#3

+ f i3 det (2, 3)HI(3)K0(3, 4)H,(4)Ko(4, 1) dr4 d#4 dr3 d#3

The antisymmetry of K'(2, 1) with respect to interchange of the final
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r's follows from the fact that the final coordinates only appear in the
determinant factors. The antisymmetry with respect to exchange of
initial coordinates is clear from the following argument when H,(3)
is symmetrical with respect to interchange of pairs of initial particle
coordinates. Exchange two particle coordinates in r1, say rl, and r2

in the second term in (39). The term Ko(3, I) has the same form as
it would without the interchange if we replace r4 by r3 and r3 by r4.

This does not change the volume element for integration or the inter-
action part of the Hamiltonian H1(3) (provided that HI(3) is sym-
metrical in all particle variables). It, however, does interchange a
pair of columns in the determinant so that the determinant can only
be returned to its original form at the expense of changing the sign
of the second term in (39). The same argument can be applied to
each term in the perturbation expansion.

The fermion partition function is then

(40) ZNF . det(l, l)dri

- f...f det(I,3)HP3)Ko(3, l)dr3 d AdrI +.

As in the Boltzmann case the partition function can be expanded as a
sum of products of integrals over connected clusters or subsets of
particles. However, now clusters can exist even in the absence of
interactions; the n-toron is a cluster of n particles which are connected
by virtue of their indistinguishability. In the case of bosons the
determinants in (40) are to be replaced by permanents.

If one introduces an extended b, which is the (I//!) multiplied by
the sum over all integrals which correspond to diagrams of I particles
connected by any number of interaction lines or by indistinguish-
ability or both, one can rederive (34), or with the introduction of the
grand partition function (37). The first few b,'s are now

,= 0.
I 1 1

(41) b, CD + O-.O+ (ýD + O =0+

++..

Here 4 represents a 2-toron, S a 3-toron, etc.
The next section contains a derivation of the set of rules needed for

the calculation of each component of a b,.
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3. Algorithm for construction of integrals assocalted with diagrams.
The form we use for the free particle propagator is (18)

(42) K0 rA,% rlf 1) (2= I) exp &~2 - rjph1) -- ý9 Ip ~
and the form we use for the potential energy of interaction is its

Fourier integral representation

(43) 0(r2 - r1) = f u(q)exp [iq.(r 2 - r)h/-1] d3q.

Although considerable generality exists in our development, the
example which we frequently have in mind in our discussions is the
coulomb interaction

(44) 0r) = e2/r

(e being the charge on any one of our particles). It is easily verified
that the appropriate form for u(q) is

(45) u(q) = e2/2hnr2q2

since

(46) =f ' 2 exp (iq. rh - 1) d3q.

In this example our perturbation theory is an expansion in powers of
2e .

In the absence of any interaction the only contribution to b, is an
I-toron or a free particle which cncirclc:i our (r, f) cylinder I times,
thus spanning a range I4 of P space in its course which starts and ends
at the same point r. The appropriate integrand for b, is (since
P2 - P, = 49 in (40) while r2 = ri = r)

(47a) Ko(r, I11; r, 0) = (2 1) exp (-lpp2)/2n d3p,

which is independent of r. We must finally integrate this over all
possible starting positions r. This integration merely contributes the
volume of the container since (47) is independent of r. In the case of
fermions a factor (- 1) + must be added. Hence

b,= p (1); f exp (-Ifp2 )/2mn d3p}

x (number of ways an l-toron can be constructed from I particles).
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The ordering of our I particle lines, each of length Pi, around our
(r, P) cylinder is equivalent to that of ! points connected in a ring.
The number of different ways this can be done is (I - 1)! Hence
(47b) b J(Il (3xp (_ lfp 2/2m) d3p,

I (27wh) j

the upper sign being appropriate for fermions and the lower for
bosons.

The grand partition function and hence (PVIkT) of a set of free
fermions or bosons is obtained by substituting (47b) into (37). One
obtains the well-known result

(48) PV/kT= logZ. = T (2 3 1-f (s-zexp -fip 2/2m)'d 3pv 2r f _pl. ~

= V ( f log(I +_ :eaP 2
- )dap

The parameter Z must be chosen so that

(49) N ZclogZG

I zexp(-Pp2 /2m)dap
(2h)3 j 1 I ± z exp (-_p 2 /2m)

is the preassigned density of our assembly.
We begin our discussioa of the influence of interactions by con-

sidering the most elementary diagram fragment with an interaction,
a free particle line connected with a single interaction line (Fig. 9).

(2) P2

q
02 *3 'r4

(I) Pl

Figure 9
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When such a fragment exists as part of a more complicated cluster
integral, the contribution to log ZG involves the integration over all
points at which interactions can occur. Hence one would have to
integrate in particular over all values of r2. At fixed r2 the propagator
of our fragment is the product of propagators (1), (2), and (3):

(50a) (I) f exp [i(r 2 - r,).ph• hI - (/2 - P,)p2 /2m] d3p1,

(50b) (3) - f u(q) exp [iq.(r 4 - r2)h'1]d3 q.

(c) (2) f exp [i(r 3 - r2).ph-' - (93 - P2)p 2/2m] d3p 2 .

The minus sign appears in (3) because in the basic integral equation
(25) the interaction H,(3) appears with a minus sign so that in all
iterations which occur in the perturbation theory the minus sign
always goes with H, and therefore with i(q). If we multiply these
three together and integrate over all r2 , this integration yields a factor

(51) f exp [irV.(pI - q - p2)h-I] d3r2 = (2wrh) 3 8(pG - q - P2).

The variable p, represents the momentum of our free particle while it
goes from r, to r2 , P2 that is in the transition from r2 to r3 while q is
the momentum transferred from r, to r, due to the interaction of our
particle of interest at r2 with another at r,. Eq. (51) is just a state-
ment of the conservation of momentum at (r2 #2):

(52) p 1 = p 2 + q.

One must also integrate over all possible values of 92 at which an
interaction might take place. This is most conveniently accomplished
through the introduction of an energy variable s which is conjugate
to # in a manner analogous to that in which p and r are conjugate.
We note that

(5) e'a' ds { 2
/21" if a >0,

(53)p/2m = if)

This representation is especially useful because it allows one to inte-
grate freely over the various P variables. For example, suppose
interactions were to occur at P1 and #3 in Fig. 9 as well as at P2, SO

that if the inequality P, < #2 < Pz were violated, the complete graph
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of which Fig. 9 is a fragment would change its shape. Through use
of a representation similar to (53) for the Gaussian in (I) and (2)
one would be able to integrate freely on 92 from - oo to + oo because
the integral would vanish automatically when #2 extended beyond
its allowed range (#, Ps),

We are now in a position to derive general rules for the construction
of the integral associated with an arbitrary diagram such as that
given in Fig. 10. We do this by first finding a simple expression for

Figure 10

a single toron fragment of such a diagram. Then we find rules for
combining torons. Fig. II represents a typical N toron with n
interaction lines at

(54) 0 < 91 < 92 <... < P < Nfl.

The momentum transfer at these points is

qj, q2," " ",qj.

Our N-toron has been mapped into a circle of circumference NP, the
first turn when constructed on our (r, P) cylinder is included in the
range (0, P), the second turn in the range (fl, 2P), etc. We denote the
full propagator associated with the fragment in Fig. I I by

(55) FN(rrýr2 . . 1#2 ... ).

The translational and periodic symmetry of a toron is such that a
translation of all interaction points by an amount P leads to exactly
the original diagram again. This would weight the same diagram
twice. In order to avoid such a multiple weighting, we restrict the
interaction 9, to the interval (0, P)

(56) 0 < P, < P.
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PP0

Figure I I

Now our propagator (55) is the product of
(a) all free particle propagators which carry particles from Px to

P2, 92 to 93, etc. (ro and fo being identified with r, and f)

(57) L{(2.h) 3f exp [i(r, - r_ 1) -ph - - (#I, - P ~22]d

(b) all interaction propagators

(58) hf [-u(q,)] exp [iq,.(r;-r)h-I] d-q,;

(c) (l+ I for fermions;
(d) :, a weight : being associated with each particle when one

calculates > b,:'.
One must finally integrate over all points (r,, #,) at which interactions
can occur on our N-torons. We have denoted the momentum of a
free particle between the jth and (j + I)st interactions by p,. It is
convenient to define the momentum p by

(59) p = pR.

It is exactly the momentum of the free particle which exists at .= 0.
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We begin our calculation of F, , r •,) by examining all the
terms in the product of (a), (b), (c), and (d) which contain only rl,
r2,.. •., r.. Integrating over r, and applying the results (51) and (52)
we find that the (2Qrh) - factors in (57) cancel out and the momentum
conservation laws

(60a) pyI = p + q1, j = 2, 3..*-, n,

(60b) Pn = P, + q1,

also appear through delta functions similar to that in (51). Each pi
can be expressed in terms of p (see (59)) and the q's through

(61) p) =P +q ,+ 1 +q q+ 2 +**+qn, j < n.

If we add all terms in (60a) and (60b) we find

(62) q, +q2 +-" +q. =0.

This is just a statement that the total momentum leaving our N-toron
through interactions is zero as one would have expected.

We summarize the above results by collecting all the factors which
now contribute to (55) with the exception of the fP, dependent factors
of (57). The only remaining independent free particle momentum
variable is p, the rest disappearing through the integration over the
delta functions which led to (60). The condition (62) is expressed
by introducing a delta finction factor 8(q, + - + q.) into our
expression for F.,. Our required expression is

(63) -(-:-)'f f dapd:'q.. .d 3q. 8(q, + q2 + - + q.)

x -I - u(q,) exp (iq,. r~h-1)1 (9 dependent factor).

We finish our calculation of F, by examining the P dependent factor
of (63). It is the P integral under the restrictions (54) and (56). The
P dependent factors of (63) are just those of (57), namely the Gaussian
factors. In order to simplify the P integrations we use the representa-
tion (53), for then we can integrate freely over the Ps with the restric-
tion (54) removed with the assurance that when it is violated the
integrand will vanish automatically. Our required factor before
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integration is then (the S function being defined by (53))

(64) S(A2 - fl,;p,)S(f3 - fl2;p2)...S(f0. - P.-p-P

x S(Nj9 - (ft. - PI);p.) = f S(N + P, - &t. 1) dp.+

X S(Pi + "-f.l; Ps)

where fP,. is defined to be

(65) flP÷i = Nfl + fl#.

We have postulated the interaction with other torons to occur at fP
values flP, fl2,..., flP. Since all interactions are isothermal Pjy must
correspond to the same temperature as fl,. All levels #;, P; + P,
fl; + 2fl, •., etc., are at the same temperature on our (r, f9) cylinder
and our isothermal condition can be expressed as

(66) fl = fl, mod fl, j= , 2,..., n.

The delta function of period fP

(67) •8(#; - flA) = 2 (,8-)

vanishes unless fl = fP, mod fP. On the other hand

(68) SO(f; - fl,) dfl, = .

If a factor 8•(P - fl,) is introduced into (64) for each j, then the
resulting quantity will vanish unless each ft, has a value compatible
with the preassigned fls. Our expression of interest is then

(69) fS(NP + ft, - fl, 1)dp,,+ I so(#' - P%)SCfl, 1 - p,).
f 1=11

Furthermore, in the calculation of a cluster integral one must integrate
over all possible points at which interactions can occur; i.e. over all

-, < #I < f, . Since our S function was defined to vanish when
4 1 < fP, for all j, we can integrate freely on (69) except for #I, which

(see 56) was limited to the range (0, ft)
(70) f" .df, f- f S(NP• + #I, - ft.. 1) dl.÷, IA....dA

X H1 SO(fi - fl,)S(fl, + 1 - fl,; p,).,~i
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Following (53) we set (j= ,2..n)

(71 S8,I f exP i(PJ+ 1 - Pds ds,.
(71)Pj; ) = , f is1 + p?2/2M

After substituting (71), (67) and the Fourier integral representation of
the first delta function of (69),

(72) B(NP + P, - += 1) e e(Na + ds" +1,

into (69), it becomes

(73) e .. 1: " . ,ds, ... ds, +

Il 2 fj {[p + is,]-1 exp 21rit,#;/fl } d# exp A ( +s - S1  - P

x F{/LJ dp% exp ip,(s, - s,2-1rtil

where t. + 0. The integral with respect to f, is exactly

(74) 8(s ,-s,- S 2) .

Hence we have the energy conservation law

(75a) s, 1 = s, + 21rt,/P, j = 2,.. n,

(75b) S,,÷ = sR,

at each interaction point. This is analogous to the momentum con-
servation (60) except that the quanta of energy transferred are multiples
of (217/g) since t, is always an integer. We define s by

(76) s s. =s.+,.

If we sum over j in (75) we find

(77) 0 2 + + 1.) = si s. = S - sR+1

so that
2,fft, 2vr R

(78) s2, • - s1 2 w"
P Pr

Hence the #I integral is equivalent to

(79) dfl, exp (f t = p 8i+ea+... *tR..
fo, P9811+t2+ 8R,0
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The s integrations are carried out successively with the aid of (69) and
(70) starting with s. 1 and ending with s,. Expression (73) reduces to

(80) 28-1 +t +t... ds e"ON
|1 'i OD f- -

X fl.ef yihD[ + is,] 1

where

(81a) sJ =s + 7 (t,+ + + t), j<n,

(81b) S, = S, p pl,

and the other p's are related to p and the q's by (61). Eq. (80) is just
the P dependent factor which must be inserted into (63).

At this stage it should be noted that one can very well collect a
complete class of fragments of diagrams together; namely, all those
which are torons similar to Fig. II with n interaction lines. If we
insert (80) into (63) and sum over all N from I to oo, we find a single
expression
(82) F(r;, r'2. .. ;["[.. .')= • F,(ri, . P..[")

f .. f'"d3 q, ... dXq.#-" S(q +'"+q.) St'",,.+

x A,(qt,,.. - qn1.) I1 {-u(q,) exp i[q,.r,/h- + 2rt,f,/fl]}

where
(83) A.(q 1 1t...q.t,) = f... d3p ds %(is) H is' +

f 1~=1 2

and
•zefil/(I + :eies) Fermi Dirac,

(84) Ois) = ze'8'/(l - :etla) Einstein Bose,
: ze'fs Maxwell Boltzmann.

The Fermi Dirac form of w(is) follows immediately from (63) and
(82). The Einstein Bose case follows after the minus signs are
removed from the term in front of the integral sign in (63). The
Maxwell Boltzmann result corresponds to the case N = I in (63),
since in this classical limit only torons of order one occur.
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Let us now direct ourselves to the problem of combining fragments
such as Fig. I I to yield complete cluster integrals. The free particle

r4 11 4  r

P 1 P 1

r 2, 02 '2 , 2

(a) (b)
Figure 12

propagator which has three fixed positions (Fig. 12a) differs from the
propagator of a fragment with three fixed positions, one at the end
of an interaction line (Fig. 12b) by having the interaction propagator

U(P2 - PI)

replaced by

(21h)- 3.

This follows from the fact that the integrations over r in (12b) yields
a factor (2nh)' (see Eq. 51) which would not appear in (12a). The
interaction line of (12b) of course does not appear in (12a).

Now suppose that in a general fragment such as that in Fig. II, an
interaction line is omitted and an unintegrated point is left on the
toron. Then the appropriate u(q) in (82) would be replaced by
(2vh)- 3.

To get a feel for what is involved in combining fragments to produce
complete cluster integrals, we start by combining the two fragments
(a) and (b) of Fig. 13 by integrating over the connecting point (r2, 2).
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rOP r2 22 r3 0 3  rd9P r3 • 3

Figure 13 Figure 14

The propagators of fragments (a) and (b) are respectively

91 fd 3qq1 dq3 8(q, + qO)AA(q, 1 1; q212)[- u(q 2)](2-h) -3

exp i[(q1 *r, + q2 r2)h -1 + 2v(tfl1 + t2fl2)/#]

= 1 fd3q2 A2(-q 2, -1; q 212)[_-u(q2)](2wh)

x exp i[q2 .(r2 - rj)h-1 + 2wt20 2 - #I)/#]

and

9- f d 3q'2 A 2(-q'2 , -1';q'2 t)[-u(q2 )](21rh)-3

f2

x exp i[q'2 (r3 - r 2)h2-1 + 2t12(f3 - ].

If we multiply these two propagators together and integrate over r2

and #2, we obtain

(85) (2h f dq 2 A3(-q 2, -t2; q2, t 2)[-u(q2)]'

x exp i[q2 .(r 3 - rl)h/-1 + 2--t 2(f93 - #I)/#]-

One can proceed in the same manner to show that a chain of n
torons (Fig. 15a) has a propagator

(86) .f'(r, fi; r', ') )3  fd3q A2(-q, -t; q, t)[-u(q)]"

x exp i[q.(r- - r')h - + 2it(fl" -

(a) (b)
Figure 15
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The propagator of a ring of n particles is obtained by letting r' B r',
a P- and integrating over all r' vectors which are in our container

of volume V as well as over all ff in the range (0, P). We then obtain

(87) V- 3 f daq{- A.(-q,-t: q, t)u(q)}3 .(2iv)

A combinatorial factor is also associated with the ring diagram.
This is l/n! multiplied by the number of ways a ring of n objects
can be formed from n objects, (n - I)!, the number already discussed
in connection with a free n-toron. The required combinatorial factor
is actually (1/2)(n - l)!In! = 1!2n. The factor 1/2 arises because in
the calculation of the number of possible rings every ordering of
particles occurs as well as the corresponding reverse ordering while
in the integration over all possible momentum transfers q around the
ring both signs of q, + and - occur. The -q momentum transfer
in a given ring ordering is equivalent to the +q momentum transfer
in the reverse ordering. Hence the factor 1/2 must be inserted to
compensate for this overcounting of a configuration by a factor of 2.

The sum over all rings is (counting 0 as a ring of two torons):

(88) Sum over all rings = 2 )3 
: d3q

7 [- u(q)A2(-q 1, - I:q, t)]R/n
R=2

2(2Vh)3 • f d3q{A 2(-q, -t:q, t)u(q)
- log [I + u(q)A 2(-q, -t:q, 1)]}.

The simplest diagrams with one toron acting as a node are given -in
Fig. 16. Both of these are composed of two chains and one toron
with four interaction points. In Fig. 16a our required propagator is
then the integral over (r,, #1), • - -, (r4, f#1 ) of the product of two chain
propagators (see Eq. 86 for full expansion)

.F",I(r 2 •2 . rrfl1 ) and .F'=2 (r4f 4 ; r3fl 3)

and one toron propagator with four interaction points:

Sf...fdq,. .. d'q4 flP-_ F(q, + q2 + qa + q 4 ) 8,, + +4.o

x A4(qit 1"" "q4 ti)u(q1)u(q3)

x expi1 (q*.r .+ q4 r + 0fl + '+ 14fl4)].
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b P'q3 r4 p.•

(a)

0-0--

(b)

Figure 16

After multiplying all these functions together the integrations over the
r's and P's yield delta functions which give the usual conservation of
momentum and energy equations. One finally obtains

(89) 1 (2V) 3 , f f d3q1 d3q 3l[-u(q)]"'[-u(q3)]j"A"'(-q 1 -t 1 :qltl)

x 22( -q 3 - t3 :q3t3)A 4( -ql -tl :qltl: -q 3 - t3:q3t3).

The cases in which n1 or n2 are equal to zero are "exchange integrals"
and require a special analysis which we shall not make here.

The reader can now see how to proceed with the calculation of a
general diagram. He will have little trouble in convincing himself
that he should use the following rules:

(I) For each toron with m interaction points in the diagram,
introduce a factor Am(qiti ; q 2, t2;.., ; qmt.) where (qj, tj),.., (q., t.)
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are the amounts of momentum and energy lost at each interaction
point.

(2) For each interaction line of momentum, q, introduce the factor
- u(q).

(3) Introduce a factor P- where I is the total number of torons.
and I the number of interaction lines in the diagram.

(4) Integrate the product of the above factors over all momentum
transfers and sum over all energy transfers (energy being transferred
in quanta of magnitude 2ait/!, t being an integer). The conservation
laws are to be applied at each interaction point on a toron.

(5) Introduce a factor V/(21rl) 3.
(6) Introduce the combinatorial factor (I0I!2") (number of ways

diagram can be drawn) where I = number of torons and n is the
number of independent paths along which momentum can be trans-
ferred.

The factor V(21h)-3 arises from the fact that the last delta function
in dealing with momentum conservation in particle propagators is to
be interpreted (see Eq. 23) as V8p,, 2(2rh)-3. The physical signifi-
cance of the V is that all interactions depend only on relative coor-
dinates. Hence in the configurational form of the partition function,
the integration over the position of the last particle merely contributes
the volume of the container.

The origin of the factor i - I is as follows. In the (r, fP) representa-
tion of the grand partition function, the ith toron propagator of a
complex diagram composed of I torons has the P containing factor
1-1 1 (l/gIP') = P-" 2, since the total number of interaction points,
: n,, is twice the number of interaction lines 1. The interaction lines
represent isothermal interactions, both ends of the line being associated
with the same temperature. Hence in the final P integrations, a
factor 9 appears for each line, yielding a total factor #I. When
multiplied by the above #1 - 21, we obtain the P'- mentioned in rule 3.

In order to perform detailed calculations, one must have explicit
expressions for the A's rather than their integral representations.
Although the 4-fold integrations (83) are relatively straight-forward
(at low temperatures they proceed in a manner similar to the usual
Summerfeld method for integrals which appear in the perfect FD or
EB gas) the required expressions are quite long except for the case
n = 2. A- detailed investigation of these integrals is contained in a
forthcoming review of the statistical mechanics of an electron gas.
Here we merely record a few asymptotic results for A2 ( -q, -t; q, t)
(see reference 15).
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In the Maxwell Boltzmann statistics

(90a) A2(-q, 0; q, 0) = (n + 2,n)!

~ (P [,!)aI + O(q2)] as q -* 0

(90b)
- -4- + O(q- 4) as q -o.

Ift 9 Oand

(91) A2(-q, -t;q,t) q2 +m( 2.ml 3! + O(/lq2[l + ()lq2)2j)}

(92) r = 27rmt/p,

when either q2 >> 2m/P or (Qr/q)2 >> 2m/!P.
In the FD case as P--* c for fixed Q and V

1 ) mpo 4Q + [I + (V + iQ)2] log [(V + iQ) + iJ
A2-Q q, t(V + iQ) - i]

(93) + [I + (V - iQ)2] log [(V - iQ) - i]i

iQ2Iog - Q) + ill

where

(94) z = exp - p•fi/2m; V = tq and Q q/2po.
fqPO; n lp

It is easily shown from (93) that

f41mpo(l - Vtan'- V- 1) as Q- 0,
(95) Aj (-q, -t~q, i) - 4-mpo (2 .V2aQ- 2 0 as Q - oo.

4. Application to a assembly of charged particles. We now apply
the general formalism described above to the statistical mechanics of
a gas of negative ions imbedded in a continuum of positive charge
whose charge density is so fixed that the complete assembly is electri-
cally neutral. Since our formalism is a systematic perturbation
theory in which log Z; is presented as an expansion in powers of the
inter-particle coupling constant (e2 in our case) it is best in the weak
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coupling range, i.e. e2 -- 0. The other parameters which are necessary
to describe our assembly are the particle mass, m; the particle density,
p; P I IkT and h.

Since the constant h is absent from the grand partition function
appropriate for the high temperature classical limit, this function must
depend only on the single dimensionless parameter which can be
constructed from the remaining quantities, fle2p1 3. Hence a pertur-
bation expression which is valid for small e2 is equally valid for small
P (high temperature) or small p (density) for fixed el.

In the ground state (i.e. f - oo, zero temperature) the parameter/f
disappears from various formulae. The only dimensionless quantity
which can be constructed from the remaining parameters is me 2 /hp 3 .

Hence in the ground state a perturbation expansion in e 2 is appropriate
for high densities at any fixed e.

0-a0

(a) (b)

Figure 17

The above remarks imply that if we derive a perturbation correction
to a perfect gas law which is a small coupling constant approximation,
it is equally valid as a high tcmperature, low density approximation
or a low temperature, high density approximation..

To o6tain the first correction to the perfect gas grand partition
function we calculate the terms of lowest order in e2. The diagrams
associated with terms of order e 2 have one interaction line. They are
exhibited in Fig. 17. It turns out that in an electrically neutral
assembly, all diagrams which can be decomposed into two disconnected
diagrams by cutting a single interaction line (for example, Fig. 17a
and 18(a) and (e)) vanish. The diagram of Fig. 17b represents what
is known as the lowest order exchange integral. It was calculated
many years ago and offers no difficulty. We do not discuss it here
since Jno special features of the systematic perturbation theory are
required.

The next order terms are those proportional to e4, those associated
with diagrams with two interaction lines. They are exhibited in
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Fig. 18. For reasons mentioned above, Fig. 18a and Fig. I8b con-
tribute nothing to log ZG.

0-0-0 Q-o
(a) (b)

0 © 0
(c) (d) (C)

Figurc 18

The contribution of 18(c) to log ZG is (employing the rules of the

last section)

(96) 4(2h) f fdaq u2(q)AR(-q, -t; q, 1),

where (see Eq. 45)

u(q) = e2/2hV2 2q2 .

Note that when t = 0 in the MB statistics (Eq. 95)
(97) A' - : 2#2(2-m/#)3,2 + O(q2)

so thatour required integral (96) diverges in the small q range. No
difficulty exists in the large q range. When t # 0, A 2 = O(q4).
Hence for small q when t o 0, d 3q u2(q),1 = 0(q2 ) dq and there is

no divergence problem. In the FD case (Eq. 95) A 2 is independent
of Q as Q - 0. Hence the integral in (96) again diverges. In
summary, after working so hard to derive a systematic perturbation
theory, we find that the first perturbation integrals diverge so that at
first glance our work seems for nought. Actually the divergence
difficulty was known (in a somewhat different form) in the classical
theory of electrolytes some forty years ago as well as in the FD case
of an electron gas in a metal some thirty years ago.

Debye and Hulckel avoided the divergence by employing another
method of the calculation of the thermodynamic properties of electro-
lytes. However, their method was appropriate only for very dilute
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solutions and could not be extended to higher concentrations. J. E.
Mayer made the correct step to resolve the divergence difficulty in the
MB case and Gell-Mann and Brueckner independently used the same
idea in the FD case.

Suppose that instead of fretting over our troubles in the calculation
of (96), we go on to the next order nonexchange contribution to
log Za, the ring of three interacting particles

(2rnh)3 > df3dq u3(q)A3(-q, -t: q, t).

This term .is even more divergent than (96). However, the sum over
all rings (Eq. 88)

(98) V 3q dqA 2(-q, -t:q, i)u(q)

- log [I + u(q)A 2(-q, -t:q, t)]}

is convergent. For example, if in the MB case we examine the t = 0
term and approximate A2 by #(22rmi, jp) 3 

2, we have

(99) 2(2wt)V f' 4-q2 dq{2- - log (I +)

where

(100) 
: = 2m/' 2

2h77'

The above convergent integral has the value

27r2 V, 3 12  2V 2V /:e 2 n)312 2m )3 A.(101) 3(2-hP): = 3(2;h)P -h) \(2#T

Since the perfect gas contribution (I-toron contribution) to the
log Zu is (see Eq. 47) :VIh'/(2/r[!m)3'2, the total contribution of the
noninteracting particle graphs plus ring graphs to log ZG, or to
PV/kT is (see Eqs. 48 and 36)

PV= :V 277 2V -~e 2 m) 3'2 (2m) 3 ,4
+ T__I-(102) j- = log Z ' = h'(21rp/im), 2  3(27'h).3 ( h T9

while and the density p are related through (Eq. 49)

z i, log Z' # Ir2 (:e2
mn\ 

3'2 2m 3 14
(103) P V -P 'z = h3(2lim)3'2 + (2--7• k ]/"
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Here one is interested in z as el -* 0. In the limit

(104) = pA3(2w/r/)112.

The correction 8z to this value when e is small but finite is obtained
by substituting (104) into the second term on the right hand side of
(103) and solving for the z in the first term on the right hand side
(104). One obtains

(105) : = (2wr) 312h3(l/M) 312p{l - e 3# 3!2pU 2ff 12 + 0(p)).

Substituting this into (102) we find the Debye-Huckel equation of
state

(106) PikT = p l I e P2e3,,312p12}

The high pressure ground state energy of an electron gas is obtained

by substituting (93) into (98). As P -x o (T - 0) the parameter

V = 2vtmr/fqpo

becomes a continuous variable even though t is discrete.. The sum-
mation with respect to t can be converted to an integral with respect
to V. Then (98) becomes (after letting q = q'po and ignoring the
prime on q' and allowing for two spin states by replacing u(q)A 2 by
2u(q)A 2)

____ f1(,V e2A2(q, V)1i

(107) VP•f q3 dq :: dV{ e'/I2 gq, V) log [1 + e--p2
pq- V .

The log Zý is then, to the ring integral approximation,

(108) log1 Z = log ZG°1 + (107)

where Z,,0 is the grand partition function of a perfect Fermi gas.
The internal energy is found by differentiating (108) with respect to

Sat constant : = exp #p20/2m; the density by differentiating (108)
with respect to z at constant ft. For this purpose we substitute
Po = (2mf#-I log Z)1/2 into (108) before carrying out our differentia-
tions. The details of the differentiation are tedious but straight-
forward. They have been given in some detail in the original paper
of Montroll and Ward. As in the classical case we assume that
z = zo + 8z where z0 is now chosen to be exp (flp2/2m) (p, being the
Fermi momentum h(3,r 2p)" 3. Then the correction 8: is found to



I APPLICATION TO AN ASSEMBLY OF CHARGED PARTICLES 175

keep the density at p. Now one can express the ground state energy
(as l-+o) as

E = Eo(z) + 8E(z)

= EO(zo) + 7 8z + 8E(zo)} +.

The first order correction to Ehe free particle contribution to the
ground state energy has two parts, one being the direct correlation
energy evaluated at z = zo and the second being the change in the
free particle energy due to the fact that : must be changed to yield the
proper density. One finally obtains the correlation energy,
[E - Eo(:o)], to be

(109) .corr - 3h2 q 3 dq

r dVfe2A 2o._ log [+ eA 2q_ }

where (4/3)frprgo = I and ,, = (4/970)1'3. This is exactly the Gell-
Mann-Brueckner formula for the correlation energy per particle of
an electron gas. A detailed discussion of the integral is given in the
Brueckner lecture notes of the 1958 lIcole d'L6t de Physique Theorique.
Numerically Brueckner finds (in Rydbergs)

E,,orr = -0.096 + 0.0622 In r,

with r, = ro/ra, ra being the Bohr radius.
The physical idea behind the removal of the small q divergence is

that each direct interaction between two particles is to be replaced
by the sum of -- + 0 + -- 0----- + ... , the direct
interaction plus an interaction through an intermediate particle plus
one through two intermediates, etc. We examine the consequence of
this idea in the classical limit. We consider only the terms t = 0,
since in our required limit only these terms led to divergences. Then
we should replace u(q) by

(110) u(q) - A2(-q, 0; q, O)u2 (q) + A'u 3(q). = u(q)/[l + A2u(q)].

From this we can calculate an effective potential to replace the coulomb
potential e2 /r. This potential would be just the Fourier transform
of (110)

(I I a)f d 3 q ex__p (iq. rh -1 ) e2
(Ilia) q 2 [1 + -q -2 -q 2 r
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where I/K is the so-called Debye length:

(I I lb) of2 = 4-ppe2.

The factor exp - ir is the well-known Debye screening factor.
Now it can be shown in a systematic way, by rearranging diagrams

in the cluster integral expansion, that the grand partition function
can be expended in terms of cluster integrals involving the screened
coulomb potential. Let us see what is involved in calculating in the
classical limit the sin'plest of these (see Fig. 19). In the figure each

Figure 19

bond connecting our two 1-torons is the screened potential rather
than e2 /r. We perform the calculation in position space. First we
note that our two torons at the ends of the diagram shrink to a point
in the limit --+ 0, since each toron has a circumference P. We also
divide by 1/3! so that we can integrate freely over the P's at interaction
points (see remark after Eq. 32). Note that the free particle propa-
gator (19) approaches 8 (r' - rj) as (0 2 - 0)-0. Hence all inter-
action points in Fig. 19 coalesce into one point and our required
integral is

410 r2  exp - Kr 3 dr = 4 r- I exp (- 3Kr) dr

which diverges. We eliminated the divergence in one class of dia-
grams due to the long range character of the coulomb interaction
(small momentum transfer) only to find that another class of diver-
gences have appeared due to the behavior of the screened coulomb
potential at short distances. Here we must be brave and consider the
whole class of diagrams with two node points

+ + +.....
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which are known as "watermelons" in the classical limit and "ladders"
in the quantum limit. The nth of these is

-)nn. fo exp (- nnr) r2 dr

so that the sum over all of them (starting with the third, the second
merely being our old ring integral)

147r r2{exp(-e2r- Iexp -Kr) I + -(exp -Kr)
0 r e4

21r2 (exp - 2Kr)} dr

which converges. This type of collection of diagrams was first due
to Morita, its application to the coulomb interaction problem by Abe.
The collection of ring diagrams was first made by Montroll and Mayer
and the application to the coulomb interaction problem by Mayer.
We do not proceed further here to find the actual contribution of the
watermelon terms to log ZG.

Summary. We conclude with a list of the main ideas involved in the
perturbation theory of quantum statistics of interacting particles.

I. The theory starts with the Green's function form of the Bloch
equation which is in turn transformed into an integral equation which
is solved by iteration, the nth order iteration is proportional to the
nth power of the coupling constant which characterizes the strength
of the interparticle interaction.

2. A diagrammatic representation is introduced which makes it
possible to identify any term in the perturbation expansion without
long detailed formulae.

3. The logarithm of the grand partition function (from which all
thermodynamic quantities can be calculated) ` expressed as a sum
over all connected diagrams containing any number of interaction
lines and particles. This form can be characterized in the following
manner. The grand partition function is the sum over alI possible
elementary events on our (r, P) or (p, E) cylinder which involve any
number of particles and quanta of interaction provided that the
events are such that no free end exists on any particle or interaction
quanta propagator lines and that all diagrams which represent the
events are connected. A weight z" is given to events which involve
n particles, every segment of a diagram is represented by either a free
particle propagator or an interaction propagator. The only elemen-
tary events are the creation and annihilation of particles or quanta
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of interaction with energy and momentum being conserved during
the occurrence of each event. Actually one could start with these
remarks as the basic postulates of statistical mechanics and derive all
other results from them.

4. Finally, divergences occur in the evaluation of various cluster
integrals which are associated with our diagrams. These are removed
by summing over various classes of diagrams and performing energy
momentum transfer integrations after the summation is performed.
This is the weak point of the theory as here presented. One has to
rely on physical plausibility rather than mathematical rigor to have
confidence in the results. It is not even clear that all divergences can
be dealt with in this way; it just turns out that in the weak coupling
limit, the first few terms in the systematic expansion of thermo-
dynamic functions seem to work out well. One optimistically con-
tinues, hoping that all is right with the world.
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